[1963] | 1 | /* |
---|
| 2 | * Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith |
---|
| 3 | * Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. |
---|
| 4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org |
---|
| 5 | Bullet Continuous Collision Detection and Physics Library |
---|
| 6 | Bullet is Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 7 | |
---|
| 8 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 9 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 10 | Permission is granted to anyone to use this software for any purpose, |
---|
| 11 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 12 | subject to the following restrictions: |
---|
| 13 | |
---|
| 14 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 15 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 16 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | ///ODE box-box collision detection is adapted to work with Bullet |
---|
| 20 | |
---|
| 21 | #include "btBoxBoxDetector.h" |
---|
| 22 | #include "BulletCollision/CollisionShapes/btBoxShape.h" |
---|
| 23 | |
---|
| 24 | #include <float.h> |
---|
| 25 | #include <string.h> |
---|
| 26 | |
---|
| 27 | btBoxBoxDetector::btBoxBoxDetector(btBoxShape* box1,btBoxShape* box2) |
---|
| 28 | : m_box1(box1), |
---|
| 29 | m_box2(box2) |
---|
| 30 | { |
---|
| 31 | |
---|
| 32 | } |
---|
| 33 | |
---|
| 34 | |
---|
| 35 | // given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and |
---|
| 36 | // generate contact points. this returns 0 if there is no contact otherwise |
---|
| 37 | // it returns the number of contacts generated. |
---|
| 38 | // `normal' returns the contact normal. |
---|
| 39 | // `depth' returns the maximum penetration depth along that normal. |
---|
| 40 | // `return_code' returns a number indicating the type of contact that was |
---|
| 41 | // detected: |
---|
| 42 | // 1,2,3 = box 2 intersects with a face of box 1 |
---|
| 43 | // 4,5,6 = box 1 intersects with a face of box 2 |
---|
| 44 | // 7..15 = edge-edge contact |
---|
| 45 | // `maxc' is the maximum number of contacts allowed to be generated, i.e. |
---|
| 46 | // the size of the `contact' array. |
---|
| 47 | // `contact' and `skip' are the contact array information provided to the |
---|
| 48 | // collision functions. this function only fills in the position and depth |
---|
| 49 | // fields. |
---|
| 50 | struct dContactGeom; |
---|
| 51 | #define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)]) |
---|
| 52 | #define dInfinity FLT_MAX |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | /*PURE_INLINE btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); } |
---|
| 56 | PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); } |
---|
| 57 | PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); } |
---|
| 58 | PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); } |
---|
| 59 | */ |
---|
| 60 | static btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); } |
---|
| 61 | static btScalar dDOT44 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,4); } |
---|
| 62 | static btScalar dDOT41 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,1); } |
---|
| 63 | static btScalar dDOT14 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,4); } |
---|
| 64 | #define dMULTIPLYOP1_331(A,op,B,C) \ |
---|
| 65 | {\ |
---|
| 66 | (A)[0] op dDOT41((B),(C)); \ |
---|
| 67 | (A)[1] op dDOT41((B+1),(C)); \ |
---|
| 68 | (A)[2] op dDOT41((B+2),(C)); \ |
---|
| 69 | } |
---|
| 70 | |
---|
| 71 | #define dMULTIPLYOP0_331(A,op,B,C) \ |
---|
| 72 | { \ |
---|
| 73 | (A)[0] op dDOT((B),(C)); \ |
---|
| 74 | (A)[1] op dDOT((B+4),(C)); \ |
---|
| 75 | (A)[2] op dDOT((B+8),(C)); \ |
---|
| 76 | } |
---|
| 77 | |
---|
| 78 | #define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C) |
---|
| 79 | #define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C) |
---|
| 80 | |
---|
| 81 | typedef btScalar dMatrix3[4*3]; |
---|
| 82 | |
---|
| 83 | void dLineClosestApproach (const btVector3& pa, const btVector3& ua, |
---|
| 84 | const btVector3& pb, const btVector3& ub, |
---|
| 85 | btScalar *alpha, btScalar *beta); |
---|
| 86 | void dLineClosestApproach (const btVector3& pa, const btVector3& ua, |
---|
| 87 | const btVector3& pb, const btVector3& ub, |
---|
| 88 | btScalar *alpha, btScalar *beta) |
---|
| 89 | { |
---|
| 90 | btVector3 p; |
---|
| 91 | p[0] = pb[0] - pa[0]; |
---|
| 92 | p[1] = pb[1] - pa[1]; |
---|
| 93 | p[2] = pb[2] - pa[2]; |
---|
| 94 | btScalar uaub = dDOT(ua,ub); |
---|
| 95 | btScalar q1 = dDOT(ua,p); |
---|
| 96 | btScalar q2 = -dDOT(ub,p); |
---|
| 97 | btScalar d = 1-uaub*uaub; |
---|
| 98 | if (d <= btScalar(0.0001f)) { |
---|
| 99 | // @@@ this needs to be made more robust |
---|
| 100 | *alpha = 0; |
---|
| 101 | *beta = 0; |
---|
| 102 | } |
---|
| 103 | else { |
---|
| 104 | d = 1.f/d; |
---|
| 105 | *alpha = (q1 + uaub*q2)*d; |
---|
| 106 | *beta = (uaub*q1 + q2)*d; |
---|
| 107 | } |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | |
---|
| 111 | |
---|
| 112 | // find all the intersection points between the 2D rectangle with vertices |
---|
| 113 | // at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]), |
---|
| 114 | // (p[2],p[3]),(p[4],p[5]),(p[6],p[7]). |
---|
| 115 | // |
---|
| 116 | // the intersection points are returned as x,y pairs in the 'ret' array. |
---|
| 117 | // the number of intersection points is returned by the function (this will |
---|
| 118 | // be in the range 0 to 8). |
---|
| 119 | |
---|
| 120 | static int intersectRectQuad2 (btScalar h[2], btScalar p[8], btScalar ret[16]) |
---|
| 121 | { |
---|
| 122 | // q (and r) contain nq (and nr) coordinate points for the current (and |
---|
| 123 | // chopped) polygons |
---|
| 124 | int nq=4,nr=0; |
---|
| 125 | btScalar buffer[16]; |
---|
| 126 | btScalar *q = p; |
---|
| 127 | btScalar *r = ret; |
---|
| 128 | for (int dir=0; dir <= 1; dir++) { |
---|
| 129 | // direction notation: xy[0] = x axis, xy[1] = y axis |
---|
| 130 | for (int sign=-1; sign <= 1; sign += 2) { |
---|
| 131 | // chop q along the line xy[dir] = sign*h[dir] |
---|
| 132 | btScalar *pq = q; |
---|
| 133 | btScalar *pr = r; |
---|
| 134 | nr = 0; |
---|
| 135 | for (int i=nq; i > 0; i--) { |
---|
| 136 | // go through all points in q and all lines between adjacent points |
---|
| 137 | if (sign*pq[dir] < h[dir]) { |
---|
| 138 | // this point is inside the chopping line |
---|
| 139 | pr[0] = pq[0]; |
---|
| 140 | pr[1] = pq[1]; |
---|
| 141 | pr += 2; |
---|
| 142 | nr++; |
---|
| 143 | if (nr & 8) { |
---|
| 144 | q = r; |
---|
| 145 | goto done; |
---|
| 146 | } |
---|
| 147 | } |
---|
| 148 | btScalar *nextq = (i > 1) ? pq+2 : q; |
---|
| 149 | if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) { |
---|
| 150 | // this line crosses the chopping line |
---|
| 151 | pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) / |
---|
| 152 | (nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]); |
---|
| 153 | pr[dir] = sign*h[dir]; |
---|
| 154 | pr += 2; |
---|
| 155 | nr++; |
---|
| 156 | if (nr & 8) { |
---|
| 157 | q = r; |
---|
| 158 | goto done; |
---|
| 159 | } |
---|
| 160 | } |
---|
| 161 | pq += 2; |
---|
| 162 | } |
---|
| 163 | q = r; |
---|
| 164 | r = (q==ret) ? buffer : ret; |
---|
| 165 | nq = nr; |
---|
| 166 | } |
---|
| 167 | } |
---|
| 168 | done: |
---|
| 169 | if (q != ret) memcpy (ret,q,nr*2*sizeof(btScalar)); |
---|
| 170 | return nr; |
---|
| 171 | } |
---|
| 172 | |
---|
| 173 | |
---|
| 174 | #define M__PI 3.14159265f |
---|
| 175 | |
---|
| 176 | // given n points in the plane (array p, of size 2*n), generate m points that |
---|
| 177 | // best represent the whole set. the definition of 'best' here is not |
---|
| 178 | // predetermined - the idea is to select points that give good box-box |
---|
| 179 | // collision detection behavior. the chosen point indexes are returned in the |
---|
| 180 | // array iret (of size m). 'i0' is always the first entry in the array. |
---|
| 181 | // n must be in the range [1..8]. m must be in the range [1..n]. i0 must be |
---|
| 182 | // in the range [0..n-1]. |
---|
| 183 | |
---|
| 184 | void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]); |
---|
| 185 | void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]) |
---|
| 186 | { |
---|
| 187 | // compute the centroid of the polygon in cx,cy |
---|
| 188 | int i,j; |
---|
| 189 | btScalar a,cx,cy,q; |
---|
| 190 | if (n==1) { |
---|
| 191 | cx = p[0]; |
---|
| 192 | cy = p[1]; |
---|
| 193 | } |
---|
| 194 | else if (n==2) { |
---|
| 195 | cx = btScalar(0.5)*(p[0] + p[2]); |
---|
| 196 | cy = btScalar(0.5)*(p[1] + p[3]); |
---|
| 197 | } |
---|
| 198 | else { |
---|
| 199 | a = 0; |
---|
| 200 | cx = 0; |
---|
| 201 | cy = 0; |
---|
| 202 | for (i=0; i<(n-1); i++) { |
---|
| 203 | q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1]; |
---|
| 204 | a += q; |
---|
| 205 | cx += q*(p[i*2]+p[i*2+2]); |
---|
| 206 | cy += q*(p[i*2+1]+p[i*2+3]); |
---|
| 207 | } |
---|
| 208 | q = p[n*2-2]*p[1] - p[0]*p[n*2-1]; |
---|
[2430] | 209 | if (btFabs(a+q) > SIMD_EPSILON) |
---|
| 210 | { |
---|
| 211 | a = 1.f/(btScalar(3.0)*(a+q)); |
---|
| 212 | } else |
---|
| 213 | { |
---|
[8351] | 214 | a=BT_LARGE_FLOAT; |
---|
[2430] | 215 | } |
---|
[1963] | 216 | cx = a*(cx + q*(p[n*2-2]+p[0])); |
---|
| 217 | cy = a*(cy + q*(p[n*2-1]+p[1])); |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | // compute the angle of each point w.r.t. the centroid |
---|
| 221 | btScalar A[8]; |
---|
| 222 | for (i=0; i<n; i++) A[i] = btAtan2(p[i*2+1]-cy,p[i*2]-cx); |
---|
| 223 | |
---|
| 224 | // search for points that have angles closest to A[i0] + i*(2*pi/m). |
---|
| 225 | int avail[8]; |
---|
| 226 | for (i=0; i<n; i++) avail[i] = 1; |
---|
| 227 | avail[i0] = 0; |
---|
| 228 | iret[0] = i0; |
---|
| 229 | iret++; |
---|
| 230 | for (j=1; j<m; j++) { |
---|
| 231 | a = btScalar(j)*(2*M__PI/m) + A[i0]; |
---|
| 232 | if (a > M__PI) a -= 2*M__PI; |
---|
| 233 | btScalar maxdiff=1e9,diff; |
---|
| 234 | |
---|
| 235 | *iret = i0; // iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0 |
---|
| 236 | |
---|
| 237 | for (i=0; i<n; i++) { |
---|
| 238 | if (avail[i]) { |
---|
| 239 | diff = btFabs (A[i]-a); |
---|
| 240 | if (diff > M__PI) diff = 2*M__PI - diff; |
---|
| 241 | if (diff < maxdiff) { |
---|
| 242 | maxdiff = diff; |
---|
| 243 | *iret = i; |
---|
| 244 | } |
---|
| 245 | } |
---|
| 246 | } |
---|
| 247 | #if defined(DEBUG) || defined (_DEBUG) |
---|
| 248 | btAssert (*iret != i0); // ensure iret got set |
---|
| 249 | #endif |
---|
| 250 | avail[*iret] = 0; |
---|
| 251 | iret++; |
---|
| 252 | } |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | |
---|
| 256 | |
---|
| 257 | int dBoxBox2 (const btVector3& p1, const dMatrix3 R1, |
---|
| 258 | const btVector3& side1, const btVector3& p2, |
---|
| 259 | const dMatrix3 R2, const btVector3& side2, |
---|
| 260 | btVector3& normal, btScalar *depth, int *return_code, |
---|
| 261 | int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output); |
---|
| 262 | int dBoxBox2 (const btVector3& p1, const dMatrix3 R1, |
---|
| 263 | const btVector3& side1, const btVector3& p2, |
---|
| 264 | const dMatrix3 R2, const btVector3& side2, |
---|
| 265 | btVector3& normal, btScalar *depth, int *return_code, |
---|
| 266 | int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output) |
---|
| 267 | { |
---|
| 268 | const btScalar fudge_factor = btScalar(1.05); |
---|
[8351] | 269 | btVector3 p,pp,normalC(0.f,0.f,0.f); |
---|
[1963] | 270 | const btScalar *normalR = 0; |
---|
| 271 | btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33, |
---|
| 272 | Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l; |
---|
| 273 | int i,j,invert_normal,code; |
---|
| 274 | |
---|
| 275 | // get vector from centers of box 1 to box 2, relative to box 1 |
---|
| 276 | p = p2 - p1; |
---|
| 277 | dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1 |
---|
| 278 | |
---|
| 279 | // get side lengths / 2 |
---|
| 280 | A[0] = side1[0]*btScalar(0.5); |
---|
| 281 | A[1] = side1[1]*btScalar(0.5); |
---|
| 282 | A[2] = side1[2]*btScalar(0.5); |
---|
| 283 | B[0] = side2[0]*btScalar(0.5); |
---|
| 284 | B[1] = side2[1]*btScalar(0.5); |
---|
| 285 | B[2] = side2[2]*btScalar(0.5); |
---|
| 286 | |
---|
| 287 | // Rij is R1'*R2, i.e. the relative rotation between R1 and R2 |
---|
| 288 | R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); |
---|
| 289 | R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); |
---|
| 290 | R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); |
---|
| 291 | |
---|
| 292 | Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13); |
---|
| 293 | Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23); |
---|
| 294 | Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33); |
---|
| 295 | |
---|
| 296 | // for all 15 possible separating axes: |
---|
| 297 | // * see if the axis separates the boxes. if so, return 0. |
---|
| 298 | // * find the depth of the penetration along the separating axis (s2) |
---|
| 299 | // * if this is the largest depth so far, record it. |
---|
| 300 | // the normal vector will be set to the separating axis with the smallest |
---|
| 301 | // depth. note: normalR is set to point to a column of R1 or R2 if that is |
---|
| 302 | // the smallest depth normal so far. otherwise normalR is 0 and normalC is |
---|
| 303 | // set to a vector relative to body 1. invert_normal is 1 if the sign of |
---|
| 304 | // the normal should be flipped. |
---|
| 305 | |
---|
| 306 | #define TST(expr1,expr2,norm,cc) \ |
---|
| 307 | s2 = btFabs(expr1) - (expr2); \ |
---|
| 308 | if (s2 > 0) return 0; \ |
---|
| 309 | if (s2 > s) { \ |
---|
| 310 | s = s2; \ |
---|
| 311 | normalR = norm; \ |
---|
| 312 | invert_normal = ((expr1) < 0); \ |
---|
| 313 | code = (cc); \ |
---|
| 314 | } |
---|
| 315 | |
---|
| 316 | s = -dInfinity; |
---|
| 317 | invert_normal = 0; |
---|
| 318 | code = 0; |
---|
| 319 | |
---|
| 320 | // separating axis = u1,u2,u3 |
---|
| 321 | TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1); |
---|
| 322 | TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2); |
---|
| 323 | TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3); |
---|
| 324 | |
---|
| 325 | // separating axis = v1,v2,v3 |
---|
| 326 | TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4); |
---|
| 327 | TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5); |
---|
| 328 | TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6); |
---|
| 329 | |
---|
| 330 | // note: cross product axes need to be scaled when s is computed. |
---|
| 331 | // normal (n1,n2,n3) is relative to box 1. |
---|
| 332 | #undef TST |
---|
| 333 | #define TST(expr1,expr2,n1,n2,n3,cc) \ |
---|
| 334 | s2 = btFabs(expr1) - (expr2); \ |
---|
[8351] | 335 | if (s2 > SIMD_EPSILON) return 0; \ |
---|
[1963] | 336 | l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \ |
---|
[8351] | 337 | if (l > SIMD_EPSILON) { \ |
---|
[1963] | 338 | s2 /= l; \ |
---|
| 339 | if (s2*fudge_factor > s) { \ |
---|
| 340 | s = s2; \ |
---|
| 341 | normalR = 0; \ |
---|
| 342 | normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \ |
---|
| 343 | invert_normal = ((expr1) < 0); \ |
---|
| 344 | code = (cc); \ |
---|
| 345 | } \ |
---|
| 346 | } |
---|
| 347 | |
---|
[8351] | 348 | btScalar fudge2 (1.0e-5f); |
---|
| 349 | |
---|
| 350 | Q11 += fudge2; |
---|
| 351 | Q12 += fudge2; |
---|
| 352 | Q13 += fudge2; |
---|
| 353 | |
---|
| 354 | Q21 += fudge2; |
---|
| 355 | Q22 += fudge2; |
---|
| 356 | Q23 += fudge2; |
---|
| 357 | |
---|
| 358 | Q31 += fudge2; |
---|
| 359 | Q32 += fudge2; |
---|
| 360 | Q33 += fudge2; |
---|
| 361 | |
---|
[1963] | 362 | // separating axis = u1 x (v1,v2,v3) |
---|
| 363 | TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7); |
---|
| 364 | TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8); |
---|
| 365 | TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9); |
---|
| 366 | |
---|
| 367 | // separating axis = u2 x (v1,v2,v3) |
---|
| 368 | TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10); |
---|
| 369 | TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11); |
---|
| 370 | TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12); |
---|
| 371 | |
---|
| 372 | // separating axis = u3 x (v1,v2,v3) |
---|
| 373 | TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13); |
---|
| 374 | TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14); |
---|
| 375 | TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15); |
---|
| 376 | |
---|
| 377 | #undef TST |
---|
| 378 | |
---|
| 379 | if (!code) return 0; |
---|
| 380 | |
---|
| 381 | // if we get to this point, the boxes interpenetrate. compute the normal |
---|
| 382 | // in global coordinates. |
---|
| 383 | if (normalR) { |
---|
| 384 | normal[0] = normalR[0]; |
---|
| 385 | normal[1] = normalR[4]; |
---|
| 386 | normal[2] = normalR[8]; |
---|
| 387 | } |
---|
| 388 | else { |
---|
| 389 | dMULTIPLY0_331 (normal,R1,normalC); |
---|
| 390 | } |
---|
| 391 | if (invert_normal) { |
---|
| 392 | normal[0] = -normal[0]; |
---|
| 393 | normal[1] = -normal[1]; |
---|
| 394 | normal[2] = -normal[2]; |
---|
| 395 | } |
---|
| 396 | *depth = -s; |
---|
| 397 | |
---|
| 398 | // compute contact point(s) |
---|
| 399 | |
---|
| 400 | if (code > 6) { |
---|
| 401 | // an edge from box 1 touches an edge from box 2. |
---|
| 402 | // find a point pa on the intersecting edge of box 1 |
---|
| 403 | btVector3 pa; |
---|
| 404 | btScalar sign; |
---|
| 405 | for (i=0; i<3; i++) pa[i] = p1[i]; |
---|
| 406 | for (j=0; j<3; j++) { |
---|
| 407 | sign = (dDOT14(normal,R1+j) > 0) ? btScalar(1.0) : btScalar(-1.0); |
---|
| 408 | for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j]; |
---|
| 409 | } |
---|
| 410 | |
---|
| 411 | // find a point pb on the intersecting edge of box 2 |
---|
| 412 | btVector3 pb; |
---|
| 413 | for (i=0; i<3; i++) pb[i] = p2[i]; |
---|
| 414 | for (j=0; j<3; j++) { |
---|
| 415 | sign = (dDOT14(normal,R2+j) > 0) ? btScalar(-1.0) : btScalar(1.0); |
---|
| 416 | for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j]; |
---|
| 417 | } |
---|
| 418 | |
---|
| 419 | btScalar alpha,beta; |
---|
| 420 | btVector3 ua,ub; |
---|
| 421 | for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4]; |
---|
| 422 | for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4]; |
---|
| 423 | |
---|
| 424 | dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta); |
---|
| 425 | for (i=0; i<3; i++) pa[i] += ua[i]*alpha; |
---|
| 426 | for (i=0; i<3; i++) pb[i] += ub[i]*beta; |
---|
| 427 | |
---|
| 428 | { |
---|
| 429 | |
---|
| 430 | //contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]); |
---|
| 431 | //contact[0].depth = *depth; |
---|
| 432 | btVector3 pointInWorld; |
---|
| 433 | |
---|
| 434 | #ifdef USE_CENTER_POINT |
---|
| 435 | for (i=0; i<3; i++) |
---|
| 436 | pointInWorld[i] = (pa[i]+pb[i])*btScalar(0.5); |
---|
| 437 | output.addContactPoint(-normal,pointInWorld,-*depth); |
---|
| 438 | #else |
---|
| 439 | output.addContactPoint(-normal,pb,-*depth); |
---|
[8351] | 440 | |
---|
[1963] | 441 | #endif // |
---|
| 442 | *return_code = code; |
---|
| 443 | } |
---|
| 444 | return 1; |
---|
| 445 | } |
---|
| 446 | |
---|
| 447 | // okay, we have a face-something intersection (because the separating |
---|
| 448 | // axis is perpendicular to a face). define face 'a' to be the reference |
---|
| 449 | // face (i.e. the normal vector is perpendicular to this) and face 'b' to be |
---|
| 450 | // the incident face (the closest face of the other box). |
---|
| 451 | |
---|
| 452 | const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb; |
---|
| 453 | if (code <= 3) { |
---|
| 454 | Ra = R1; |
---|
| 455 | Rb = R2; |
---|
| 456 | pa = p1; |
---|
| 457 | pb = p2; |
---|
| 458 | Sa = A; |
---|
| 459 | Sb = B; |
---|
| 460 | } |
---|
| 461 | else { |
---|
| 462 | Ra = R2; |
---|
| 463 | Rb = R1; |
---|
| 464 | pa = p2; |
---|
| 465 | pb = p1; |
---|
| 466 | Sa = B; |
---|
| 467 | Sb = A; |
---|
| 468 | } |
---|
| 469 | |
---|
| 470 | // nr = normal vector of reference face dotted with axes of incident box. |
---|
| 471 | // anr = absolute values of nr. |
---|
| 472 | btVector3 normal2,nr,anr; |
---|
| 473 | if (code <= 3) { |
---|
| 474 | normal2[0] = normal[0]; |
---|
| 475 | normal2[1] = normal[1]; |
---|
| 476 | normal2[2] = normal[2]; |
---|
| 477 | } |
---|
| 478 | else { |
---|
| 479 | normal2[0] = -normal[0]; |
---|
| 480 | normal2[1] = -normal[1]; |
---|
| 481 | normal2[2] = -normal[2]; |
---|
| 482 | } |
---|
| 483 | dMULTIPLY1_331 (nr,Rb,normal2); |
---|
| 484 | anr[0] = btFabs (nr[0]); |
---|
| 485 | anr[1] = btFabs (nr[1]); |
---|
| 486 | anr[2] = btFabs (nr[2]); |
---|
| 487 | |
---|
| 488 | // find the largest compontent of anr: this corresponds to the normal |
---|
| 489 | // for the indident face. the other axis numbers of the indicent face |
---|
| 490 | // are stored in a1,a2. |
---|
| 491 | int lanr,a1,a2; |
---|
| 492 | if (anr[1] > anr[0]) { |
---|
| 493 | if (anr[1] > anr[2]) { |
---|
| 494 | a1 = 0; |
---|
| 495 | lanr = 1; |
---|
| 496 | a2 = 2; |
---|
| 497 | } |
---|
| 498 | else { |
---|
| 499 | a1 = 0; |
---|
| 500 | a2 = 1; |
---|
| 501 | lanr = 2; |
---|
| 502 | } |
---|
| 503 | } |
---|
| 504 | else { |
---|
| 505 | if (anr[0] > anr[2]) { |
---|
| 506 | lanr = 0; |
---|
| 507 | a1 = 1; |
---|
| 508 | a2 = 2; |
---|
| 509 | } |
---|
| 510 | else { |
---|
| 511 | a1 = 0; |
---|
| 512 | a2 = 1; |
---|
| 513 | lanr = 2; |
---|
| 514 | } |
---|
| 515 | } |
---|
| 516 | |
---|
| 517 | // compute center point of incident face, in reference-face coordinates |
---|
| 518 | btVector3 center; |
---|
| 519 | if (nr[lanr] < 0) { |
---|
| 520 | for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr]; |
---|
| 521 | } |
---|
| 522 | else { |
---|
| 523 | for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr]; |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | // find the normal and non-normal axis numbers of the reference box |
---|
| 527 | int codeN,code1,code2; |
---|
| 528 | if (code <= 3) codeN = code-1; else codeN = code-4; |
---|
| 529 | if (codeN==0) { |
---|
| 530 | code1 = 1; |
---|
| 531 | code2 = 2; |
---|
| 532 | } |
---|
| 533 | else if (codeN==1) { |
---|
| 534 | code1 = 0; |
---|
| 535 | code2 = 2; |
---|
| 536 | } |
---|
| 537 | else { |
---|
| 538 | code1 = 0; |
---|
| 539 | code2 = 1; |
---|
| 540 | } |
---|
| 541 | |
---|
| 542 | // find the four corners of the incident face, in reference-face coordinates |
---|
| 543 | btScalar quad[8]; // 2D coordinate of incident face (x,y pairs) |
---|
| 544 | btScalar c1,c2,m11,m12,m21,m22; |
---|
| 545 | c1 = dDOT14 (center,Ra+code1); |
---|
| 546 | c2 = dDOT14 (center,Ra+code2); |
---|
| 547 | // optimize this? - we have already computed this data above, but it is not |
---|
| 548 | // stored in an easy-to-index format. for now it's quicker just to recompute |
---|
| 549 | // the four dot products. |
---|
| 550 | m11 = dDOT44 (Ra+code1,Rb+a1); |
---|
| 551 | m12 = dDOT44 (Ra+code1,Rb+a2); |
---|
| 552 | m21 = dDOT44 (Ra+code2,Rb+a1); |
---|
| 553 | m22 = dDOT44 (Ra+code2,Rb+a2); |
---|
| 554 | { |
---|
| 555 | btScalar k1 = m11*Sb[a1]; |
---|
| 556 | btScalar k2 = m21*Sb[a1]; |
---|
| 557 | btScalar k3 = m12*Sb[a2]; |
---|
| 558 | btScalar k4 = m22*Sb[a2]; |
---|
| 559 | quad[0] = c1 - k1 - k3; |
---|
| 560 | quad[1] = c2 - k2 - k4; |
---|
| 561 | quad[2] = c1 - k1 + k3; |
---|
| 562 | quad[3] = c2 - k2 + k4; |
---|
| 563 | quad[4] = c1 + k1 + k3; |
---|
| 564 | quad[5] = c2 + k2 + k4; |
---|
| 565 | quad[6] = c1 + k1 - k3; |
---|
| 566 | quad[7] = c2 + k2 - k4; |
---|
| 567 | } |
---|
| 568 | |
---|
| 569 | // find the size of the reference face |
---|
| 570 | btScalar rect[2]; |
---|
| 571 | rect[0] = Sa[code1]; |
---|
| 572 | rect[1] = Sa[code2]; |
---|
| 573 | |
---|
| 574 | // intersect the incident and reference faces |
---|
| 575 | btScalar ret[16]; |
---|
| 576 | int n = intersectRectQuad2 (rect,quad,ret); |
---|
| 577 | if (n < 1) return 0; // this should never happen |
---|
| 578 | |
---|
| 579 | // convert the intersection points into reference-face coordinates, |
---|
| 580 | // and compute the contact position and depth for each point. only keep |
---|
| 581 | // those points that have a positive (penetrating) depth. delete points in |
---|
| 582 | // the 'ret' array as necessary so that 'point' and 'ret' correspond. |
---|
| 583 | btScalar point[3*8]; // penetrating contact points |
---|
| 584 | btScalar dep[8]; // depths for those points |
---|
| 585 | btScalar det1 = 1.f/(m11*m22 - m12*m21); |
---|
| 586 | m11 *= det1; |
---|
| 587 | m12 *= det1; |
---|
| 588 | m21 *= det1; |
---|
| 589 | m22 *= det1; |
---|
| 590 | int cnum = 0; // number of penetrating contact points found |
---|
| 591 | for (j=0; j < n; j++) { |
---|
| 592 | btScalar k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2); |
---|
| 593 | btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2); |
---|
| 594 | for (i=0; i<3; i++) point[cnum*3+i] = |
---|
| 595 | center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2]; |
---|
| 596 | dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3); |
---|
| 597 | if (dep[cnum] >= 0) { |
---|
| 598 | ret[cnum*2] = ret[j*2]; |
---|
| 599 | ret[cnum*2+1] = ret[j*2+1]; |
---|
| 600 | cnum++; |
---|
| 601 | } |
---|
| 602 | } |
---|
| 603 | if (cnum < 1) return 0; // this should never happen |
---|
| 604 | |
---|
| 605 | // we can't generate more contacts than we actually have |
---|
| 606 | if (maxc > cnum) maxc = cnum; |
---|
| 607 | if (maxc < 1) maxc = 1; |
---|
| 608 | |
---|
| 609 | if (cnum <= maxc) { |
---|
[8351] | 610 | |
---|
| 611 | if (code<4) |
---|
| 612 | { |
---|
[1963] | 613 | // we have less contacts than we need, so we use them all |
---|
[8351] | 614 | for (j=0; j < cnum; j++) |
---|
| 615 | { |
---|
[1963] | 616 | btVector3 pointInWorld; |
---|
| 617 | for (i=0; i<3; i++) |
---|
| 618 | pointInWorld[i] = point[j*3+i] + pa[i]; |
---|
| 619 | output.addContactPoint(-normal,pointInWorld,-dep[j]); |
---|
| 620 | |
---|
| 621 | } |
---|
[8351] | 622 | } else |
---|
| 623 | { |
---|
| 624 | // we have less contacts than we need, so we use them all |
---|
| 625 | for (j=0; j < cnum; j++) |
---|
| 626 | { |
---|
| 627 | btVector3 pointInWorld; |
---|
| 628 | for (i=0; i<3; i++) |
---|
| 629 | pointInWorld[i] = point[j*3+i] + pa[i]-normal[i]*dep[j]; |
---|
| 630 | //pointInWorld[i] = point[j*3+i] + pa[i]; |
---|
| 631 | output.addContactPoint(-normal,pointInWorld,-dep[j]); |
---|
| 632 | } |
---|
| 633 | } |
---|
[1963] | 634 | } |
---|
| 635 | else { |
---|
| 636 | // we have more contacts than are wanted, some of them must be culled. |
---|
| 637 | // find the deepest point, it is always the first contact. |
---|
| 638 | int i1 = 0; |
---|
| 639 | btScalar maxdepth = dep[0]; |
---|
| 640 | for (i=1; i<cnum; i++) { |
---|
| 641 | if (dep[i] > maxdepth) { |
---|
| 642 | maxdepth = dep[i]; |
---|
| 643 | i1 = i; |
---|
| 644 | } |
---|
| 645 | } |
---|
| 646 | |
---|
| 647 | int iret[8]; |
---|
| 648 | cullPoints2 (cnum,ret,maxc,i1,iret); |
---|
| 649 | |
---|
| 650 | for (j=0; j < maxc; j++) { |
---|
| 651 | // dContactGeom *con = CONTACT(contact,skip*j); |
---|
| 652 | // for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i]; |
---|
| 653 | // con->depth = dep[iret[j]]; |
---|
| 654 | |
---|
| 655 | btVector3 posInWorld; |
---|
| 656 | for (i=0; i<3; i++) |
---|
| 657 | posInWorld[i] = point[iret[j]*3+i] + pa[i]; |
---|
[8351] | 658 | if (code<4) |
---|
| 659 | { |
---|
| 660 | output.addContactPoint(-normal,posInWorld,-dep[iret[j]]); |
---|
| 661 | } else |
---|
| 662 | { |
---|
| 663 | output.addContactPoint(-normal,posInWorld-normal*dep[iret[j]],-dep[iret[j]]); |
---|
| 664 | } |
---|
[1963] | 665 | } |
---|
| 666 | cnum = maxc; |
---|
| 667 | } |
---|
| 668 | |
---|
| 669 | *return_code = code; |
---|
| 670 | return cnum; |
---|
| 671 | } |
---|
| 672 | |
---|
| 673 | void btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* /*debugDraw*/,bool /*swapResults*/) |
---|
| 674 | { |
---|
| 675 | |
---|
| 676 | const btTransform& transformA = input.m_transformA; |
---|
| 677 | const btTransform& transformB = input.m_transformB; |
---|
| 678 | |
---|
| 679 | int skip = 0; |
---|
| 680 | dContactGeom *contact = 0; |
---|
| 681 | |
---|
| 682 | dMatrix3 R1; |
---|
| 683 | dMatrix3 R2; |
---|
| 684 | |
---|
| 685 | for (int j=0;j<3;j++) |
---|
| 686 | { |
---|
| 687 | R1[0+4*j] = transformA.getBasis()[j].x(); |
---|
| 688 | R2[0+4*j] = transformB.getBasis()[j].x(); |
---|
| 689 | |
---|
| 690 | R1[1+4*j] = transformA.getBasis()[j].y(); |
---|
| 691 | R2[1+4*j] = transformB.getBasis()[j].y(); |
---|
| 692 | |
---|
| 693 | |
---|
| 694 | R1[2+4*j] = transformA.getBasis()[j].z(); |
---|
| 695 | R2[2+4*j] = transformB.getBasis()[j].z(); |
---|
| 696 | |
---|
| 697 | } |
---|
| 698 | |
---|
| 699 | |
---|
| 700 | |
---|
| 701 | btVector3 normal; |
---|
| 702 | btScalar depth; |
---|
| 703 | int return_code; |
---|
| 704 | int maxc = 4; |
---|
| 705 | |
---|
| 706 | |
---|
| 707 | dBoxBox2 (transformA.getOrigin(), |
---|
| 708 | R1, |
---|
| 709 | 2.f*m_box1->getHalfExtentsWithMargin(), |
---|
| 710 | transformB.getOrigin(), |
---|
| 711 | R2, |
---|
| 712 | 2.f*m_box2->getHalfExtentsWithMargin(), |
---|
| 713 | normal, &depth, &return_code, |
---|
| 714 | maxc, contact, skip, |
---|
| 715 | output |
---|
| 716 | ); |
---|
| 717 | |
---|
| 718 | } |
---|