[1963] | 1 | /* |
---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 4 | |
---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 9 | subject to the following restrictions: |
---|
| 10 | |
---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 14 | */ |
---|
| 15 | |
---|
[8351] | 16 | ///Specialized capsule-capsule collision algorithm has been added for Bullet 2.75 release to increase ragdoll performance |
---|
| 17 | ///If you experience problems with capsule-capsule collision, try to define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER and report it in the Bullet forums |
---|
| 18 | ///with reproduction case |
---|
| 19 | //define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER 1 |
---|
| 20 | |
---|
[1963] | 21 | #include "btConvexConvexAlgorithm.h" |
---|
| 22 | |
---|
| 23 | //#include <stdio.h> |
---|
| 24 | #include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h" |
---|
| 25 | #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h" |
---|
| 26 | #include "BulletCollision/CollisionDispatch/btCollisionObject.h" |
---|
| 27 | #include "BulletCollision/CollisionShapes/btConvexShape.h" |
---|
[8351] | 28 | #include "BulletCollision/CollisionShapes/btCapsuleShape.h" |
---|
[8393] | 29 | #include "BulletCollision/CollisionShapes/btTriangleShape.h" |
---|
[8351] | 30 | |
---|
| 31 | |
---|
[8393] | 32 | |
---|
[1963] | 33 | #include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h" |
---|
| 34 | #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" |
---|
| 35 | #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" |
---|
| 36 | #include "BulletCollision/CollisionShapes/btBoxShape.h" |
---|
| 37 | #include "BulletCollision/CollisionDispatch/btManifoldResult.h" |
---|
| 38 | |
---|
| 39 | #include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h" |
---|
| 40 | #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h" |
---|
| 41 | #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h" |
---|
| 42 | #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h" |
---|
| 43 | |
---|
| 44 | |
---|
| 45 | |
---|
| 46 | #include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h" |
---|
| 47 | #include "BulletCollision/CollisionShapes/btSphereShape.h" |
---|
| 48 | |
---|
| 49 | #include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h" |
---|
| 50 | |
---|
[2430] | 51 | #include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h" |
---|
[1963] | 52 | #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h" |
---|
[8393] | 53 | #include "BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.h" |
---|
[1963] | 54 | |
---|
| 55 | |
---|
[8351] | 56 | /////////// |
---|
[1963] | 57 | |
---|
| 58 | |
---|
| 59 | |
---|
[8351] | 60 | static SIMD_FORCE_INLINE void segmentsClosestPoints( |
---|
| 61 | btVector3& ptsVector, |
---|
| 62 | btVector3& offsetA, |
---|
| 63 | btVector3& offsetB, |
---|
| 64 | btScalar& tA, btScalar& tB, |
---|
| 65 | const btVector3& translation, |
---|
| 66 | const btVector3& dirA, btScalar hlenA, |
---|
| 67 | const btVector3& dirB, btScalar hlenB ) |
---|
| 68 | { |
---|
| 69 | // compute the parameters of the closest points on each line segment |
---|
[1963] | 70 | |
---|
[8351] | 71 | btScalar dirA_dot_dirB = btDot(dirA,dirB); |
---|
| 72 | btScalar dirA_dot_trans = btDot(dirA,translation); |
---|
| 73 | btScalar dirB_dot_trans = btDot(dirB,translation); |
---|
[1963] | 74 | |
---|
[8351] | 75 | btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB; |
---|
[1963] | 76 | |
---|
[8351] | 77 | if ( denom == 0.0f ) { |
---|
| 78 | tA = 0.0f; |
---|
| 79 | } else { |
---|
| 80 | tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom; |
---|
| 81 | if ( tA < -hlenA ) |
---|
| 82 | tA = -hlenA; |
---|
| 83 | else if ( tA > hlenA ) |
---|
| 84 | tA = hlenA; |
---|
| 85 | } |
---|
| 86 | |
---|
| 87 | tB = tA * dirA_dot_dirB - dirB_dot_trans; |
---|
| 88 | |
---|
| 89 | if ( tB < -hlenB ) { |
---|
| 90 | tB = -hlenB; |
---|
| 91 | tA = tB * dirA_dot_dirB + dirA_dot_trans; |
---|
| 92 | |
---|
| 93 | if ( tA < -hlenA ) |
---|
| 94 | tA = -hlenA; |
---|
| 95 | else if ( tA > hlenA ) |
---|
| 96 | tA = hlenA; |
---|
| 97 | } else if ( tB > hlenB ) { |
---|
| 98 | tB = hlenB; |
---|
| 99 | tA = tB * dirA_dot_dirB + dirA_dot_trans; |
---|
| 100 | |
---|
| 101 | if ( tA < -hlenA ) |
---|
| 102 | tA = -hlenA; |
---|
| 103 | else if ( tA > hlenA ) |
---|
| 104 | tA = hlenA; |
---|
| 105 | } |
---|
| 106 | |
---|
| 107 | // compute the closest points relative to segment centers. |
---|
| 108 | |
---|
| 109 | offsetA = dirA * tA; |
---|
| 110 | offsetB = dirB * tB; |
---|
| 111 | |
---|
| 112 | ptsVector = translation - offsetA + offsetB; |
---|
| 113 | } |
---|
| 114 | |
---|
| 115 | |
---|
| 116 | static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance( |
---|
| 117 | btVector3& normalOnB, |
---|
| 118 | btVector3& pointOnB, |
---|
| 119 | btScalar capsuleLengthA, |
---|
| 120 | btScalar capsuleRadiusA, |
---|
| 121 | btScalar capsuleLengthB, |
---|
| 122 | btScalar capsuleRadiusB, |
---|
| 123 | int capsuleAxisA, |
---|
| 124 | int capsuleAxisB, |
---|
| 125 | const btTransform& transformA, |
---|
| 126 | const btTransform& transformB, |
---|
| 127 | btScalar distanceThreshold ) |
---|
| 128 | { |
---|
| 129 | btVector3 directionA = transformA.getBasis().getColumn(capsuleAxisA); |
---|
| 130 | btVector3 translationA = transformA.getOrigin(); |
---|
| 131 | btVector3 directionB = transformB.getBasis().getColumn(capsuleAxisB); |
---|
| 132 | btVector3 translationB = transformB.getOrigin(); |
---|
| 133 | |
---|
| 134 | // translation between centers |
---|
| 135 | |
---|
| 136 | btVector3 translation = translationB - translationA; |
---|
| 137 | |
---|
| 138 | // compute the closest points of the capsule line segments |
---|
| 139 | |
---|
| 140 | btVector3 ptsVector; // the vector between the closest points |
---|
| 141 | |
---|
| 142 | btVector3 offsetA, offsetB; // offsets from segment centers to their closest points |
---|
| 143 | btScalar tA, tB; // parameters on line segment |
---|
| 144 | |
---|
| 145 | segmentsClosestPoints( ptsVector, offsetA, offsetB, tA, tB, translation, |
---|
| 146 | directionA, capsuleLengthA, directionB, capsuleLengthB ); |
---|
| 147 | |
---|
| 148 | btScalar distance = ptsVector.length() - capsuleRadiusA - capsuleRadiusB; |
---|
| 149 | |
---|
| 150 | if ( distance > distanceThreshold ) |
---|
| 151 | return distance; |
---|
| 152 | |
---|
| 153 | btScalar lenSqr = ptsVector.length2(); |
---|
| 154 | if (lenSqr<= (SIMD_EPSILON*SIMD_EPSILON)) |
---|
| 155 | { |
---|
| 156 | //degenerate case where 2 capsules are likely at the same location: take a vector tangential to 'directionA' |
---|
| 157 | btVector3 q; |
---|
| 158 | btPlaneSpace1(directionA,normalOnB,q); |
---|
| 159 | } else |
---|
| 160 | { |
---|
| 161 | // compute the contact normal |
---|
| 162 | normalOnB = ptsVector*-btRecipSqrt(lenSqr); |
---|
| 163 | } |
---|
| 164 | pointOnB = transformB.getOrigin()+offsetB + normalOnB * capsuleRadiusB; |
---|
| 165 | |
---|
| 166 | return distance; |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | |
---|
| 172 | |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | ////////// |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | |
---|
| 180 | |
---|
[1963] | 181 | btConvexConvexAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver) |
---|
| 182 | { |
---|
[2882] | 183 | m_numPerturbationIterations = 0; |
---|
| 184 | m_minimumPointsPerturbationThreshold = 3; |
---|
[1963] | 185 | m_simplexSolver = simplexSolver; |
---|
| 186 | m_pdSolver = pdSolver; |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | btConvexConvexAlgorithm::CreateFunc::~CreateFunc() |
---|
| 190 | { |
---|
| 191 | } |
---|
| 192 | |
---|
[2882] | 193 | btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold) |
---|
[2430] | 194 | : btActivatingCollisionAlgorithm(ci,body0,body1), |
---|
| 195 | m_simplexSolver(simplexSolver), |
---|
| 196 | m_pdSolver(pdSolver), |
---|
[1963] | 197 | m_ownManifold (false), |
---|
| 198 | m_manifoldPtr(mf), |
---|
[2882] | 199 | m_lowLevelOfDetail(false), |
---|
[2430] | 200 | #ifdef USE_SEPDISTANCE_UTIL2 |
---|
[8351] | 201 | m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(), |
---|
[2882] | 202 | (static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()), |
---|
[2430] | 203 | #endif |
---|
[2882] | 204 | m_numPerturbationIterations(numPerturbationIterations), |
---|
| 205 | m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold) |
---|
[1963] | 206 | { |
---|
| 207 | (void)body0; |
---|
| 208 | (void)body1; |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | btConvexConvexAlgorithm::~btConvexConvexAlgorithm() |
---|
| 215 | { |
---|
| 216 | if (m_ownManifold) |
---|
| 217 | { |
---|
| 218 | if (m_manifoldPtr) |
---|
| 219 | m_dispatcher->releaseManifold(m_manifoldPtr); |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | |
---|
| 223 | void btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel) |
---|
| 224 | { |
---|
| 225 | m_lowLevelOfDetail = useLowLevel; |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | |
---|
[2882] | 229 | struct btPerturbedContactResult : public btManifoldResult |
---|
| 230 | { |
---|
| 231 | btManifoldResult* m_originalManifoldResult; |
---|
| 232 | btTransform m_transformA; |
---|
| 233 | btTransform m_transformB; |
---|
| 234 | btTransform m_unPerturbedTransform; |
---|
| 235 | bool m_perturbA; |
---|
| 236 | btIDebugDraw* m_debugDrawer; |
---|
[1963] | 237 | |
---|
| 238 | |
---|
[2882] | 239 | btPerturbedContactResult(btManifoldResult* originalResult,const btTransform& transformA,const btTransform& transformB,const btTransform& unPerturbedTransform,bool perturbA,btIDebugDraw* debugDrawer) |
---|
| 240 | :m_originalManifoldResult(originalResult), |
---|
| 241 | m_transformA(transformA), |
---|
| 242 | m_transformB(transformB), |
---|
[8351] | 243 | m_unPerturbedTransform(unPerturbedTransform), |
---|
[2882] | 244 | m_perturbA(perturbA), |
---|
| 245 | m_debugDrawer(debugDrawer) |
---|
| 246 | { |
---|
| 247 | } |
---|
| 248 | virtual ~ btPerturbedContactResult() |
---|
| 249 | { |
---|
| 250 | } |
---|
[1963] | 251 | |
---|
[2882] | 252 | virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar orgDepth) |
---|
| 253 | { |
---|
| 254 | btVector3 endPt,startPt; |
---|
| 255 | btScalar newDepth; |
---|
| 256 | btVector3 newNormal; |
---|
| 257 | |
---|
| 258 | if (m_perturbA) |
---|
| 259 | { |
---|
| 260 | btVector3 endPtOrg = pointInWorld + normalOnBInWorld*orgDepth; |
---|
| 261 | endPt = (m_unPerturbedTransform*m_transformA.inverse())(endPtOrg); |
---|
| 262 | newDepth = (endPt - pointInWorld).dot(normalOnBInWorld); |
---|
| 263 | startPt = endPt+normalOnBInWorld*newDepth; |
---|
| 264 | } else |
---|
| 265 | { |
---|
| 266 | endPt = pointInWorld + normalOnBInWorld*orgDepth; |
---|
| 267 | startPt = (m_unPerturbedTransform*m_transformB.inverse())(pointInWorld); |
---|
| 268 | newDepth = (endPt - startPt).dot(normalOnBInWorld); |
---|
| 269 | |
---|
| 270 | } |
---|
| 271 | |
---|
| 272 | //#define DEBUG_CONTACTS 1 |
---|
| 273 | #ifdef DEBUG_CONTACTS |
---|
| 274 | m_debugDrawer->drawLine(startPt,endPt,btVector3(1,0,0)); |
---|
| 275 | m_debugDrawer->drawSphere(startPt,0.05,btVector3(0,1,0)); |
---|
| 276 | m_debugDrawer->drawSphere(endPt,0.05,btVector3(0,0,1)); |
---|
| 277 | #endif //DEBUG_CONTACTS |
---|
| 278 | |
---|
| 279 | |
---|
| 280 | m_originalManifoldResult->addContactPoint(normalOnBInWorld,startPt,newDepth); |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | }; |
---|
| 284 | |
---|
| 285 | extern btScalar gContactBreakingThreshold; |
---|
| 286 | |
---|
[8351] | 287 | |
---|
[1963] | 288 | // |
---|
| 289 | // Convex-Convex collision algorithm |
---|
| 290 | // |
---|
| 291 | void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) |
---|
| 292 | { |
---|
| 293 | |
---|
| 294 | if (!m_manifoldPtr) |
---|
| 295 | { |
---|
| 296 | //swapped? |
---|
| 297 | m_manifoldPtr = m_dispatcher->getNewManifold(body0,body1); |
---|
| 298 | m_ownManifold = true; |
---|
| 299 | } |
---|
| 300 | resultOut->setPersistentManifold(m_manifoldPtr); |
---|
| 301 | |
---|
[2882] | 302 | //comment-out next line to test multi-contact generation |
---|
| 303 | //resultOut->getPersistentManifold()->clearManifold(); |
---|
[2430] | 304 | |
---|
[1963] | 305 | |
---|
| 306 | btConvexShape* min0 = static_cast<btConvexShape*>(body0->getCollisionShape()); |
---|
| 307 | btConvexShape* min1 = static_cast<btConvexShape*>(body1->getCollisionShape()); |
---|
[2430] | 308 | |
---|
[8351] | 309 | btVector3 normalOnB; |
---|
| 310 | btVector3 pointOnBWorld; |
---|
| 311 | #ifndef BT_DISABLE_CAPSULE_CAPSULE_COLLIDER |
---|
| 312 | if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE)) |
---|
| 313 | { |
---|
| 314 | btCapsuleShape* capsuleA = (btCapsuleShape*) min0; |
---|
| 315 | btCapsuleShape* capsuleB = (btCapsuleShape*) min1; |
---|
| 316 | btVector3 localScalingA = capsuleA->getLocalScaling(); |
---|
| 317 | btVector3 localScalingB = capsuleB->getLocalScaling(); |
---|
| 318 | |
---|
| 319 | btScalar threshold = m_manifoldPtr->getContactBreakingThreshold(); |
---|
| 320 | |
---|
| 321 | btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(), |
---|
| 322 | capsuleB->getHalfHeight(),capsuleB->getRadius(),capsuleA->getUpAxis(),capsuleB->getUpAxis(), |
---|
| 323 | body0->getWorldTransform(),body1->getWorldTransform(),threshold); |
---|
| 324 | |
---|
| 325 | if (dist<threshold) |
---|
| 326 | { |
---|
| 327 | btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON)); |
---|
| 328 | resultOut->addContactPoint(normalOnB,pointOnBWorld,dist); |
---|
| 329 | } |
---|
| 330 | resultOut->refreshContactPoints(); |
---|
| 331 | return; |
---|
| 332 | } |
---|
| 333 | #endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER |
---|
| 334 | |
---|
| 335 | |
---|
[8393] | 336 | |
---|
| 337 | |
---|
[2430] | 338 | #ifdef USE_SEPDISTANCE_UTIL2 |
---|
[8351] | 339 | if (dispatchInfo.m_useConvexConservativeDistanceUtil) |
---|
| 340 | { |
---|
| 341 | m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(),body1->getWorldTransform()); |
---|
| 342 | } |
---|
| 343 | |
---|
[2430] | 344 | if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance()<=0.f) |
---|
| 345 | #endif //USE_SEPDISTANCE_UTIL2 |
---|
| 346 | |
---|
| 347 | { |
---|
| 348 | |
---|
[1963] | 349 | |
---|
| 350 | btGjkPairDetector::ClosestPointInput input; |
---|
| 351 | |
---|
[2430] | 352 | btGjkPairDetector gjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver); |
---|
[1963] | 353 | //TODO: if (dispatchInfo.m_useContinuous) |
---|
[2430] | 354 | gjkPairDetector.setMinkowskiA(min0); |
---|
| 355 | gjkPairDetector.setMinkowskiB(min1); |
---|
| 356 | |
---|
| 357 | #ifdef USE_SEPDISTANCE_UTIL2 |
---|
| 358 | if (dispatchInfo.m_useConvexConservativeDistanceUtil) |
---|
| 359 | { |
---|
[8351] | 360 | input.m_maximumDistanceSquared = BT_LARGE_FLOAT; |
---|
[2430] | 361 | } else |
---|
| 362 | #endif //USE_SEPDISTANCE_UTIL2 |
---|
| 363 | { |
---|
[8393] | 364 | //if (dispatchInfo.m_convexMaxDistanceUseCPT) |
---|
| 365 | //{ |
---|
| 366 | // input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold(); |
---|
| 367 | //} else |
---|
| 368 | //{ |
---|
| 369 | input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold(); |
---|
| 370 | // } |
---|
| 371 | |
---|
[2430] | 372 | input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared; |
---|
| 373 | } |
---|
| 374 | |
---|
[1963] | 375 | input.m_stackAlloc = dispatchInfo.m_stackAllocator; |
---|
| 376 | input.m_transformA = body0->getWorldTransform(); |
---|
| 377 | input.m_transformB = body1->getWorldTransform(); |
---|
| 378 | |
---|
[2430] | 379 | |
---|
[8393] | 380 | |
---|
[8351] | 381 | |
---|
| 382 | |
---|
| 383 | #ifdef USE_SEPDISTANCE_UTIL2 |
---|
| 384 | btScalar sepDist = 0.f; |
---|
| 385 | if (dispatchInfo.m_useConvexConservativeDistanceUtil) |
---|
| 386 | { |
---|
| 387 | sepDist = gjkPairDetector.getCachedSeparatingDistance(); |
---|
| 388 | if (sepDist>SIMD_EPSILON) |
---|
| 389 | { |
---|
| 390 | sepDist += dispatchInfo.m_convexConservativeDistanceThreshold; |
---|
| 391 | //now perturbe directions to get multiple contact points |
---|
| 392 | |
---|
| 393 | } |
---|
| 394 | } |
---|
| 395 | #endif //USE_SEPDISTANCE_UTIL2 |
---|
| 396 | |
---|
[8393] | 397 | if (min0->isPolyhedral() && min1->isPolyhedral()) |
---|
| 398 | { |
---|
| 399 | |
---|
| 400 | |
---|
| 401 | struct btDummyResult : public btDiscreteCollisionDetectorInterface::Result |
---|
| 402 | { |
---|
| 403 | virtual void setShapeIdentifiersA(int partId0,int index0){} |
---|
| 404 | virtual void setShapeIdentifiersB(int partId1,int index1){} |
---|
| 405 | virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth) |
---|
| 406 | { |
---|
| 407 | } |
---|
| 408 | }; |
---|
| 409 | |
---|
| 410 | btDummyResult dummy; |
---|
| 411 | |
---|
| 412 | |
---|
| 413 | btPolyhedralConvexShape* polyhedronA = (btPolyhedralConvexShape*) min0; |
---|
| 414 | btPolyhedralConvexShape* polyhedronB = (btPolyhedralConvexShape*) min1; |
---|
| 415 | if (polyhedronA->getConvexPolyhedron() && polyhedronB->getConvexPolyhedron()) |
---|
| 416 | { |
---|
| 417 | |
---|
| 418 | |
---|
| 419 | gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw); |
---|
| 420 | |
---|
| 421 | |
---|
| 422 | btScalar threshold = m_manifoldPtr->getContactBreakingThreshold(); |
---|
| 423 | |
---|
| 424 | btScalar minDist = 0.f; |
---|
| 425 | btVector3 sepNormalWorldSpace; |
---|
| 426 | bool foundSepAxis = true; |
---|
| 427 | |
---|
| 428 | if (dispatchInfo.m_enableSatConvex) |
---|
| 429 | { |
---|
| 430 | foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis( |
---|
| 431 | *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(), |
---|
| 432 | body0->getWorldTransform(), |
---|
| 433 | body1->getWorldTransform(), |
---|
| 434 | sepNormalWorldSpace); |
---|
| 435 | } else |
---|
| 436 | { |
---|
| 437 | sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis().normalized(); |
---|
| 438 | minDist = gjkPairDetector.getCachedSeparatingDistance(); |
---|
| 439 | } |
---|
| 440 | if (foundSepAxis) |
---|
| 441 | { |
---|
| 442 | // printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ()); |
---|
| 443 | |
---|
| 444 | btPolyhedralContactClipping::clipHullAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(), |
---|
| 445 | body0->getWorldTransform(), |
---|
| 446 | body1->getWorldTransform(), minDist-threshold, threshold, *resultOut); |
---|
| 447 | |
---|
| 448 | } |
---|
| 449 | if (m_ownManifold) |
---|
| 450 | { |
---|
| 451 | resultOut->refreshContactPoints(); |
---|
| 452 | } |
---|
| 453 | return; |
---|
| 454 | |
---|
| 455 | } else |
---|
| 456 | { |
---|
| 457 | //we can also deal with convex versus triangle (without connectivity data) |
---|
| 458 | if (polyhedronA->getConvexPolyhedron() && polyhedronB->getShapeType()==TRIANGLE_SHAPE_PROXYTYPE) |
---|
| 459 | { |
---|
| 460 | gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw); |
---|
| 461 | |
---|
| 462 | btVector3 sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis().normalized(); |
---|
| 463 | |
---|
| 464 | btVertexArray vertices; |
---|
| 465 | btTriangleShape* tri = (btTriangleShape*)polyhedronB; |
---|
| 466 | vertices.push_back( body1->getWorldTransform()*tri->m_vertices1[0]); |
---|
| 467 | vertices.push_back( body1->getWorldTransform()*tri->m_vertices1[1]); |
---|
| 468 | vertices.push_back( body1->getWorldTransform()*tri->m_vertices1[2]); |
---|
| 469 | |
---|
| 470 | btScalar threshold = m_manifoldPtr->getContactBreakingThreshold(); |
---|
| 471 | btScalar minDist = gjkPairDetector.getCachedSeparatingDistance(); |
---|
| 472 | btPolyhedralContactClipping::clipFaceAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), |
---|
| 473 | body0->getWorldTransform(), vertices, minDist-threshold, threshold, *resultOut); |
---|
| 474 | |
---|
| 475 | |
---|
| 476 | if (m_ownManifold) |
---|
| 477 | { |
---|
| 478 | resultOut->refreshContactPoints(); |
---|
| 479 | } |
---|
| 480 | |
---|
| 481 | return; |
---|
| 482 | } |
---|
| 483 | |
---|
| 484 | } |
---|
| 485 | |
---|
| 486 | |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw); |
---|
| 490 | |
---|
[2882] | 491 | //now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects |
---|
| 492 | |
---|
| 493 | //perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points |
---|
[8351] | 494 | if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold) |
---|
[2882] | 495 | { |
---|
| 496 | |
---|
| 497 | int i; |
---|
[8351] | 498 | btVector3 v0,v1; |
---|
| 499 | btVector3 sepNormalWorldSpace; |
---|
| 500 | |
---|
| 501 | sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis().normalized(); |
---|
| 502 | btPlaneSpace1(sepNormalWorldSpace,v0,v1); |
---|
[2882] | 503 | |
---|
[8351] | 504 | |
---|
[2882] | 505 | bool perturbeA = true; |
---|
| 506 | const btScalar angleLimit = 0.125f * SIMD_PI; |
---|
| 507 | btScalar perturbeAngle; |
---|
| 508 | btScalar radiusA = min0->getAngularMotionDisc(); |
---|
| 509 | btScalar radiusB = min1->getAngularMotionDisc(); |
---|
| 510 | if (radiusA < radiusB) |
---|
| 511 | { |
---|
| 512 | perturbeAngle = gContactBreakingThreshold /radiusA; |
---|
| 513 | perturbeA = true; |
---|
| 514 | } else |
---|
| 515 | { |
---|
| 516 | perturbeAngle = gContactBreakingThreshold / radiusB; |
---|
| 517 | perturbeA = false; |
---|
| 518 | } |
---|
| 519 | if ( perturbeAngle > angleLimit ) |
---|
| 520 | perturbeAngle = angleLimit; |
---|
| 521 | |
---|
| 522 | btTransform unPerturbedTransform; |
---|
| 523 | if (perturbeA) |
---|
| 524 | { |
---|
| 525 | unPerturbedTransform = input.m_transformA; |
---|
| 526 | } else |
---|
| 527 | { |
---|
| 528 | unPerturbedTransform = input.m_transformB; |
---|
| 529 | } |
---|
| 530 | |
---|
| 531 | for ( i=0;i<m_numPerturbationIterations;i++) |
---|
| 532 | { |
---|
[8351] | 533 | if (v0.length2()>SIMD_EPSILON) |
---|
| 534 | { |
---|
[2882] | 535 | btQuaternion perturbeRot(v0,perturbeAngle); |
---|
| 536 | btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations)); |
---|
| 537 | btQuaternion rotq(sepNormalWorldSpace,iterationAngle); |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | if (perturbeA) |
---|
| 541 | { |
---|
| 542 | input.m_transformA.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body0->getWorldTransform().getBasis()); |
---|
| 543 | input.m_transformB = body1->getWorldTransform(); |
---|
| 544 | #ifdef DEBUG_CONTACTS |
---|
| 545 | dispatchInfo.m_debugDraw->drawTransform(input.m_transformA,10.0); |
---|
| 546 | #endif //DEBUG_CONTACTS |
---|
| 547 | } else |
---|
| 548 | { |
---|
| 549 | input.m_transformA = body0->getWorldTransform(); |
---|
| 550 | input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body1->getWorldTransform().getBasis()); |
---|
| 551 | #ifdef DEBUG_CONTACTS |
---|
| 552 | dispatchInfo.m_debugDraw->drawTransform(input.m_transformB,10.0); |
---|
| 553 | #endif |
---|
| 554 | } |
---|
| 555 | |
---|
| 556 | btPerturbedContactResult perturbedResultOut(resultOut,input.m_transformA,input.m_transformB,unPerturbedTransform,perturbeA,dispatchInfo.m_debugDraw); |
---|
| 557 | gjkPairDetector.getClosestPoints(input,perturbedResultOut,dispatchInfo.m_debugDraw); |
---|
[8351] | 558 | } |
---|
[2882] | 559 | |
---|
| 560 | } |
---|
| 561 | } |
---|
| 562 | |
---|
| 563 | |
---|
| 564 | |
---|
[2430] | 565 | #ifdef USE_SEPDISTANCE_UTIL2 |
---|
[8351] | 566 | if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist>SIMD_EPSILON)) |
---|
[2430] | 567 | { |
---|
| 568 | m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform()); |
---|
| 569 | } |
---|
| 570 | #endif //USE_SEPDISTANCE_UTIL2 |
---|
| 571 | |
---|
| 572 | |
---|
| 573 | } |
---|
| 574 | |
---|
[1963] | 575 | if (m_ownManifold) |
---|
| 576 | { |
---|
| 577 | resultOut->refreshContactPoints(); |
---|
| 578 | } |
---|
| 579 | |
---|
| 580 | } |
---|
| 581 | |
---|
| 582 | |
---|
| 583 | |
---|
| 584 | bool disableCcd = false; |
---|
| 585 | btScalar btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) |
---|
| 586 | { |
---|
| 587 | (void)resultOut; |
---|
| 588 | (void)dispatchInfo; |
---|
| 589 | ///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold |
---|
| 590 | |
---|
| 591 | ///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold |
---|
| 592 | ///col0->m_worldTransform, |
---|
| 593 | btScalar resultFraction = btScalar(1.); |
---|
| 594 | |
---|
| 595 | |
---|
| 596 | btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2(); |
---|
| 597 | btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2(); |
---|
| 598 | |
---|
| 599 | if (squareMot0 < col0->getCcdSquareMotionThreshold() && |
---|
| 600 | squareMot1 < col1->getCcdSquareMotionThreshold()) |
---|
| 601 | return resultFraction; |
---|
| 602 | |
---|
| 603 | if (disableCcd) |
---|
| 604 | return btScalar(1.); |
---|
| 605 | |
---|
| 606 | |
---|
| 607 | //An adhoc way of testing the Continuous Collision Detection algorithms |
---|
| 608 | //One object is approximated as a sphere, to simplify things |
---|
| 609 | //Starting in penetration should report no time of impact |
---|
| 610 | //For proper CCD, better accuracy and handling of 'allowed' penetration should be added |
---|
| 611 | //also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies) |
---|
| 612 | |
---|
| 613 | |
---|
| 614 | /// Convex0 against sphere for Convex1 |
---|
| 615 | { |
---|
| 616 | btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape()); |
---|
| 617 | |
---|
| 618 | btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation |
---|
| 619 | btConvexCast::CastResult result; |
---|
| 620 | btVoronoiSimplexSolver voronoiSimplex; |
---|
| 621 | //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex); |
---|
| 622 | ///Simplification, one object is simplified as a sphere |
---|
| 623 | btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex); |
---|
| 624 | //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0); |
---|
| 625 | if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(), |
---|
| 626 | col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result)) |
---|
| 627 | { |
---|
| 628 | |
---|
| 629 | //store result.m_fraction in both bodies |
---|
| 630 | |
---|
| 631 | if (col0->getHitFraction()> result.m_fraction) |
---|
| 632 | col0->setHitFraction( result.m_fraction ); |
---|
| 633 | |
---|
| 634 | if (col1->getHitFraction() > result.m_fraction) |
---|
| 635 | col1->setHitFraction( result.m_fraction); |
---|
| 636 | |
---|
| 637 | if (resultFraction > result.m_fraction) |
---|
| 638 | resultFraction = result.m_fraction; |
---|
| 639 | |
---|
| 640 | } |
---|
| 641 | |
---|
| 642 | |
---|
| 643 | |
---|
| 644 | |
---|
| 645 | } |
---|
| 646 | |
---|
| 647 | /// Sphere (for convex0) against Convex1 |
---|
| 648 | { |
---|
| 649 | btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape()); |
---|
| 650 | |
---|
| 651 | btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation |
---|
| 652 | btConvexCast::CastResult result; |
---|
| 653 | btVoronoiSimplexSolver voronoiSimplex; |
---|
| 654 | //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex); |
---|
| 655 | ///Simplification, one object is simplified as a sphere |
---|
| 656 | btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex); |
---|
| 657 | //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0); |
---|
| 658 | if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(), |
---|
| 659 | col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result)) |
---|
| 660 | { |
---|
| 661 | |
---|
| 662 | //store result.m_fraction in both bodies |
---|
| 663 | |
---|
| 664 | if (col0->getHitFraction() > result.m_fraction) |
---|
| 665 | col0->setHitFraction( result.m_fraction); |
---|
| 666 | |
---|
| 667 | if (col1->getHitFraction() > result.m_fraction) |
---|
| 668 | col1->setHitFraction( result.m_fraction); |
---|
| 669 | |
---|
| 670 | if (resultFraction > result.m_fraction) |
---|
| 671 | resultFraction = result.m_fraction; |
---|
| 672 | |
---|
| 673 | } |
---|
| 674 | } |
---|
| 675 | |
---|
| 676 | return resultFraction; |
---|
| 677 | |
---|
| 678 | } |
---|
| 679 | |
---|