1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | #include "btHeightfieldTerrainShape.h" |
---|
17 | |
---|
18 | #include "LinearMath/btTransformUtil.h" |
---|
19 | |
---|
20 | |
---|
21 | |
---|
22 | btHeightfieldTerrainShape::btHeightfieldTerrainShape |
---|
23 | ( |
---|
24 | int heightStickWidth, int heightStickLength, void* heightfieldData, |
---|
25 | btScalar heightScale, btScalar minHeight, btScalar maxHeight,int upAxis, |
---|
26 | PHY_ScalarType hdt, bool flipQuadEdges |
---|
27 | ) |
---|
28 | { |
---|
29 | initialize(heightStickWidth, heightStickLength, heightfieldData, |
---|
30 | heightScale, minHeight, maxHeight, upAxis, hdt, |
---|
31 | flipQuadEdges); |
---|
32 | } |
---|
33 | |
---|
34 | |
---|
35 | |
---|
36 | btHeightfieldTerrainShape::btHeightfieldTerrainShape(int heightStickWidth, int heightStickLength,void* heightfieldData,btScalar maxHeight,int upAxis,bool useFloatData,bool flipQuadEdges) |
---|
37 | { |
---|
38 | // legacy constructor: support only float or unsigned char, |
---|
39 | // and min height is zero |
---|
40 | PHY_ScalarType hdt = (useFloatData) ? PHY_FLOAT : PHY_UCHAR; |
---|
41 | btScalar minHeight = 0.0; |
---|
42 | |
---|
43 | // previously, height = uchar * maxHeight / 65535. |
---|
44 | // So to preserve legacy behavior, heightScale = maxHeight / 65535 |
---|
45 | btScalar heightScale = maxHeight / 65535; |
---|
46 | |
---|
47 | initialize(heightStickWidth, heightStickLength, heightfieldData, |
---|
48 | heightScale, minHeight, maxHeight, upAxis, hdt, |
---|
49 | flipQuadEdges); |
---|
50 | } |
---|
51 | |
---|
52 | |
---|
53 | |
---|
54 | void btHeightfieldTerrainShape::initialize |
---|
55 | ( |
---|
56 | int heightStickWidth, int heightStickLength, void* heightfieldData, |
---|
57 | btScalar heightScale, btScalar minHeight, btScalar maxHeight, int upAxis, |
---|
58 | PHY_ScalarType hdt, bool flipQuadEdges |
---|
59 | ) |
---|
60 | { |
---|
61 | // validation |
---|
62 | btAssert(heightStickWidth > 1 && "bad width"); |
---|
63 | btAssert(heightStickLength > 1 && "bad length"); |
---|
64 | btAssert(heightfieldData && "null heightfield data"); |
---|
65 | // btAssert(heightScale) -- do we care? Trust caller here |
---|
66 | btAssert(minHeight <= maxHeight && "bad min/max height"); |
---|
67 | btAssert(upAxis >= 0 && upAxis < 3 && |
---|
68 | "bad upAxis--should be in range [0,2]"); |
---|
69 | btAssert(hdt != PHY_UCHAR || hdt != PHY_FLOAT || hdt != PHY_SHORT && |
---|
70 | "Bad height data type enum"); |
---|
71 | |
---|
72 | // initialize member variables |
---|
73 | m_shapeType = TERRAIN_SHAPE_PROXYTYPE; |
---|
74 | m_heightStickWidth = heightStickWidth; |
---|
75 | m_heightStickLength = heightStickLength; |
---|
76 | m_minHeight = minHeight; |
---|
77 | m_maxHeight = maxHeight; |
---|
78 | m_width = (btScalar) (heightStickWidth - 1); |
---|
79 | m_length = (btScalar) (heightStickLength - 1); |
---|
80 | m_heightScale = heightScale; |
---|
81 | m_heightfieldDataUnknown = heightfieldData; |
---|
82 | m_heightDataType = hdt; |
---|
83 | m_flipQuadEdges = flipQuadEdges; |
---|
84 | m_useDiamondSubdivision = false; |
---|
85 | m_upAxis = upAxis; |
---|
86 | m_localScaling.setValue(btScalar(1.), btScalar(1.), btScalar(1.)); |
---|
87 | |
---|
88 | // determine min/max axis-aligned bounding box (aabb) values |
---|
89 | switch (m_upAxis) |
---|
90 | { |
---|
91 | case 0: |
---|
92 | { |
---|
93 | m_localAabbMin.setValue(m_minHeight, 0, 0); |
---|
94 | m_localAabbMax.setValue(m_maxHeight, m_width, m_length); |
---|
95 | break; |
---|
96 | } |
---|
97 | case 1: |
---|
98 | { |
---|
99 | m_localAabbMin.setValue(0, m_minHeight, 0); |
---|
100 | m_localAabbMax.setValue(m_width, m_maxHeight, m_length); |
---|
101 | break; |
---|
102 | }; |
---|
103 | case 2: |
---|
104 | { |
---|
105 | m_localAabbMin.setValue(0, 0, m_minHeight); |
---|
106 | m_localAabbMax.setValue(m_width, m_length, m_maxHeight); |
---|
107 | break; |
---|
108 | } |
---|
109 | default: |
---|
110 | { |
---|
111 | //need to get valid m_upAxis |
---|
112 | btAssert(0 && "Bad m_upAxis"); |
---|
113 | } |
---|
114 | } |
---|
115 | |
---|
116 | // remember origin (defined as exact middle of aabb) |
---|
117 | m_localOrigin = btScalar(0.5) * (m_localAabbMin + m_localAabbMax); |
---|
118 | } |
---|
119 | |
---|
120 | |
---|
121 | |
---|
122 | btHeightfieldTerrainShape::~btHeightfieldTerrainShape() |
---|
123 | { |
---|
124 | } |
---|
125 | |
---|
126 | |
---|
127 | |
---|
128 | void btHeightfieldTerrainShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const |
---|
129 | { |
---|
130 | btVector3 halfExtents = (m_localAabbMax-m_localAabbMin)* m_localScaling * btScalar(0.5); |
---|
131 | |
---|
132 | btVector3 localOrigin(0, 0, 0); |
---|
133 | localOrigin[m_upAxis] = (m_minHeight + m_maxHeight) * btScalar(0.5); |
---|
134 | localOrigin *= m_localScaling; |
---|
135 | |
---|
136 | btMatrix3x3 abs_b = t.getBasis().absolute(); |
---|
137 | btVector3 center = t.getOrigin(); |
---|
138 | btVector3 extent = btVector3(abs_b[0].dot(halfExtents), |
---|
139 | abs_b[1].dot(halfExtents), |
---|
140 | abs_b[2].dot(halfExtents)); |
---|
141 | extent += btVector3(getMargin(),getMargin(),getMargin()); |
---|
142 | |
---|
143 | aabbMin = center - extent; |
---|
144 | aabbMax = center + extent; |
---|
145 | } |
---|
146 | |
---|
147 | |
---|
148 | /// This returns the "raw" (user's initial) height, not the actual height. |
---|
149 | /// The actual height needs to be adjusted to be relative to the center |
---|
150 | /// of the heightfield's AABB. |
---|
151 | btScalar |
---|
152 | btHeightfieldTerrainShape::getRawHeightFieldValue(int x,int y) const |
---|
153 | { |
---|
154 | btScalar val = 0.f; |
---|
155 | switch (m_heightDataType) |
---|
156 | { |
---|
157 | case PHY_FLOAT: |
---|
158 | { |
---|
159 | val = m_heightfieldDataFloat[(y*m_heightStickWidth)+x]; |
---|
160 | break; |
---|
161 | } |
---|
162 | |
---|
163 | case PHY_UCHAR: |
---|
164 | { |
---|
165 | unsigned char heightFieldValue = m_heightfieldDataUnsignedChar[(y*m_heightStickWidth)+x]; |
---|
166 | val = heightFieldValue * m_heightScale; |
---|
167 | break; |
---|
168 | } |
---|
169 | |
---|
170 | case PHY_SHORT: |
---|
171 | { |
---|
172 | short hfValue = m_heightfieldDataShort[(y * m_heightStickWidth) + x]; |
---|
173 | val = hfValue * m_heightScale; |
---|
174 | break; |
---|
175 | } |
---|
176 | |
---|
177 | default: |
---|
178 | { |
---|
179 | btAssert(!"Bad m_heightDataType"); |
---|
180 | } |
---|
181 | } |
---|
182 | |
---|
183 | return val; |
---|
184 | } |
---|
185 | |
---|
186 | |
---|
187 | |
---|
188 | |
---|
189 | /// this returns the vertex in bullet-local coordinates |
---|
190 | void btHeightfieldTerrainShape::getVertex(int x,int y,btVector3& vertex) const |
---|
191 | { |
---|
192 | btAssert(x>=0); |
---|
193 | btAssert(y>=0); |
---|
194 | btAssert(x<m_heightStickWidth); |
---|
195 | btAssert(y<m_heightStickLength); |
---|
196 | |
---|
197 | btScalar height = getRawHeightFieldValue(x,y); |
---|
198 | |
---|
199 | switch (m_upAxis) |
---|
200 | { |
---|
201 | case 0: |
---|
202 | { |
---|
203 | vertex.setValue( |
---|
204 | height - m_localOrigin.getX(), |
---|
205 | (-m_width/btScalar(2.0)) + x, |
---|
206 | (-m_length/btScalar(2.0) ) + y |
---|
207 | ); |
---|
208 | break; |
---|
209 | } |
---|
210 | case 1: |
---|
211 | { |
---|
212 | vertex.setValue( |
---|
213 | (-m_width/btScalar(2.0)) + x, |
---|
214 | height - m_localOrigin.getY(), |
---|
215 | (-m_length/btScalar(2.0)) + y |
---|
216 | ); |
---|
217 | break; |
---|
218 | }; |
---|
219 | case 2: |
---|
220 | { |
---|
221 | vertex.setValue( |
---|
222 | (-m_width/btScalar(2.0)) + x, |
---|
223 | (-m_length/btScalar(2.0)) + y, |
---|
224 | height - m_localOrigin.getZ() |
---|
225 | ); |
---|
226 | break; |
---|
227 | } |
---|
228 | default: |
---|
229 | { |
---|
230 | //need to get valid m_upAxis |
---|
231 | btAssert(0); |
---|
232 | } |
---|
233 | } |
---|
234 | |
---|
235 | vertex*=m_localScaling; |
---|
236 | } |
---|
237 | |
---|
238 | |
---|
239 | |
---|
240 | static inline int |
---|
241 | getQuantized |
---|
242 | ( |
---|
243 | btScalar x |
---|
244 | ) |
---|
245 | { |
---|
246 | if (x < 0.0) { |
---|
247 | return (int) (x - 0.5); |
---|
248 | } |
---|
249 | return (int) (x + 0.5); |
---|
250 | } |
---|
251 | |
---|
252 | |
---|
253 | |
---|
254 | /// given input vector, return quantized version |
---|
255 | /** |
---|
256 | This routine is basically determining the gridpoint indices for a given |
---|
257 | input vector, answering the question: "which gridpoint is closest to the |
---|
258 | provided point?". |
---|
259 | |
---|
260 | "with clamp" means that we restrict the point to be in the heightfield's |
---|
261 | axis-aligned bounding box. |
---|
262 | */ |
---|
263 | void btHeightfieldTerrainShape::quantizeWithClamp(int* out, const btVector3& point,int /*isMax*/) const |
---|
264 | { |
---|
265 | btVector3 clampedPoint(point); |
---|
266 | clampedPoint.setMax(m_localAabbMin); |
---|
267 | clampedPoint.setMin(m_localAabbMax); |
---|
268 | |
---|
269 | out[0] = getQuantized(clampedPoint.getX()); |
---|
270 | out[1] = getQuantized(clampedPoint.getY()); |
---|
271 | out[2] = getQuantized(clampedPoint.getZ()); |
---|
272 | |
---|
273 | } |
---|
274 | |
---|
275 | |
---|
276 | |
---|
277 | /// process all triangles within the provided axis-aligned bounding box |
---|
278 | /** |
---|
279 | basic algorithm: |
---|
280 | - convert input aabb to local coordinates (scale down and shift for local origin) |
---|
281 | - convert input aabb to a range of heightfield grid points (quantize) |
---|
282 | - iterate over all triangles in that subset of the grid |
---|
283 | */ |
---|
284 | void btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
285 | { |
---|
286 | // scale down the input aabb's so they are in local (non-scaled) coordinates |
---|
287 | btVector3 localAabbMin = aabbMin*btVector3(1.f/m_localScaling[0],1.f/m_localScaling[1],1.f/m_localScaling[2]); |
---|
288 | btVector3 localAabbMax = aabbMax*btVector3(1.f/m_localScaling[0],1.f/m_localScaling[1],1.f/m_localScaling[2]); |
---|
289 | |
---|
290 | // account for local origin |
---|
291 | localAabbMin += m_localOrigin; |
---|
292 | localAabbMax += m_localOrigin; |
---|
293 | |
---|
294 | //quantize the aabbMin and aabbMax, and adjust the start/end ranges |
---|
295 | int quantizedAabbMin[3]; |
---|
296 | int quantizedAabbMax[3]; |
---|
297 | quantizeWithClamp(quantizedAabbMin, localAabbMin,0); |
---|
298 | quantizeWithClamp(quantizedAabbMax, localAabbMax,1); |
---|
299 | |
---|
300 | // expand the min/max quantized values |
---|
301 | // this is to catch the case where the input aabb falls between grid points! |
---|
302 | for (int i = 0; i < 3; ++i) { |
---|
303 | quantizedAabbMin[i]--; |
---|
304 | quantizedAabbMax[i]++; |
---|
305 | } |
---|
306 | |
---|
307 | int startX=0; |
---|
308 | int endX=m_heightStickWidth-1; |
---|
309 | int startJ=0; |
---|
310 | int endJ=m_heightStickLength-1; |
---|
311 | |
---|
312 | switch (m_upAxis) |
---|
313 | { |
---|
314 | case 0: |
---|
315 | { |
---|
316 | if (quantizedAabbMin[1]>startX) |
---|
317 | startX = quantizedAabbMin[1]; |
---|
318 | if (quantizedAabbMax[1]<endX) |
---|
319 | endX = quantizedAabbMax[1]; |
---|
320 | if (quantizedAabbMin[2]>startJ) |
---|
321 | startJ = quantizedAabbMin[2]; |
---|
322 | if (quantizedAabbMax[2]<endJ) |
---|
323 | endJ = quantizedAabbMax[2]; |
---|
324 | break; |
---|
325 | } |
---|
326 | case 1: |
---|
327 | { |
---|
328 | if (quantizedAabbMin[0]>startX) |
---|
329 | startX = quantizedAabbMin[0]; |
---|
330 | if (quantizedAabbMax[0]<endX) |
---|
331 | endX = quantizedAabbMax[0]; |
---|
332 | if (quantizedAabbMin[2]>startJ) |
---|
333 | startJ = quantizedAabbMin[2]; |
---|
334 | if (quantizedAabbMax[2]<endJ) |
---|
335 | endJ = quantizedAabbMax[2]; |
---|
336 | break; |
---|
337 | }; |
---|
338 | case 2: |
---|
339 | { |
---|
340 | if (quantizedAabbMin[0]>startX) |
---|
341 | startX = quantizedAabbMin[0]; |
---|
342 | if (quantizedAabbMax[0]<endX) |
---|
343 | endX = quantizedAabbMax[0]; |
---|
344 | if (quantizedAabbMin[1]>startJ) |
---|
345 | startJ = quantizedAabbMin[1]; |
---|
346 | if (quantizedAabbMax[1]<endJ) |
---|
347 | endJ = quantizedAabbMax[1]; |
---|
348 | break; |
---|
349 | } |
---|
350 | default: |
---|
351 | { |
---|
352 | //need to get valid m_upAxis |
---|
353 | btAssert(0); |
---|
354 | } |
---|
355 | } |
---|
356 | |
---|
357 | |
---|
358 | |
---|
359 | |
---|
360 | for(int j=startJ; j<endJ; j++) |
---|
361 | { |
---|
362 | for(int x=startX; x<endX; x++) |
---|
363 | { |
---|
364 | btVector3 vertices[3]; |
---|
365 | if (m_flipQuadEdges || (m_useDiamondSubdivision && !((j+x) & 1))) |
---|
366 | { |
---|
367 | //first triangle |
---|
368 | getVertex(x,j,vertices[0]); |
---|
369 | getVertex(x+1,j,vertices[1]); |
---|
370 | getVertex(x+1,j+1,vertices[2]); |
---|
371 | callback->processTriangle(vertices,x,j); |
---|
372 | //second triangle |
---|
373 | getVertex(x,j,vertices[0]); |
---|
374 | getVertex(x+1,j+1,vertices[1]); |
---|
375 | getVertex(x,j+1,vertices[2]); |
---|
376 | callback->processTriangle(vertices,x,j); |
---|
377 | } else |
---|
378 | { |
---|
379 | //first triangle |
---|
380 | getVertex(x,j,vertices[0]); |
---|
381 | getVertex(x,j+1,vertices[1]); |
---|
382 | getVertex(x+1,j,vertices[2]); |
---|
383 | callback->processTriangle(vertices,x,j); |
---|
384 | //second triangle |
---|
385 | getVertex(x+1,j,vertices[0]); |
---|
386 | getVertex(x,j+1,vertices[1]); |
---|
387 | getVertex(x+1,j+1,vertices[2]); |
---|
388 | callback->processTriangle(vertices,x,j); |
---|
389 | } |
---|
390 | } |
---|
391 | } |
---|
392 | |
---|
393 | |
---|
394 | |
---|
395 | } |
---|
396 | |
---|
397 | void btHeightfieldTerrainShape::calculateLocalInertia(btScalar ,btVector3& inertia) const |
---|
398 | { |
---|
399 | //moving concave objects not supported |
---|
400 | |
---|
401 | inertia.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
402 | } |
---|
403 | |
---|
404 | void btHeightfieldTerrainShape::setLocalScaling(const btVector3& scaling) |
---|
405 | { |
---|
406 | m_localScaling = scaling; |
---|
407 | } |
---|
408 | const btVector3& btHeightfieldTerrainShape::getLocalScaling() const |
---|
409 | { |
---|
410 | return m_localScaling; |
---|
411 | } |
---|