1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | |
---|
17 | #include "btContinuousConvexCollision.h" |
---|
18 | #include "BulletCollision/CollisionShapes/btConvexShape.h" |
---|
19 | #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h" |
---|
20 | #include "LinearMath/btTransformUtil.h" |
---|
21 | #include "BulletCollision/CollisionShapes/btSphereShape.h" |
---|
22 | |
---|
23 | #include "btGjkPairDetector.h" |
---|
24 | #include "btPointCollector.h" |
---|
25 | #include "BulletCollision/CollisionShapes/btStaticPlaneShape.h" |
---|
26 | |
---|
27 | |
---|
28 | |
---|
29 | btContinuousConvexCollision::btContinuousConvexCollision ( const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* penetrationDepthSolver) |
---|
30 | :m_simplexSolver(simplexSolver), |
---|
31 | m_penetrationDepthSolver(penetrationDepthSolver), |
---|
32 | m_convexA(convexA),m_convexB1(convexB),m_planeShape(0) |
---|
33 | { |
---|
34 | } |
---|
35 | |
---|
36 | |
---|
37 | btContinuousConvexCollision::btContinuousConvexCollision( const btConvexShape* convexA,const btStaticPlaneShape* plane) |
---|
38 | :m_simplexSolver(0), |
---|
39 | m_penetrationDepthSolver(0), |
---|
40 | m_convexA(convexA),m_convexB1(0),m_planeShape(plane) |
---|
41 | { |
---|
42 | } |
---|
43 | |
---|
44 | |
---|
45 | /// This maximum should not be necessary. It allows for untested/degenerate cases in production code. |
---|
46 | /// You don't want your game ever to lock-up. |
---|
47 | #define MAX_ITERATIONS 64 |
---|
48 | |
---|
49 | void btContinuousConvexCollision::computeClosestPoints( const btTransform& transA, const btTransform& transB,btPointCollector& pointCollector) |
---|
50 | { |
---|
51 | if (m_convexB1) |
---|
52 | { |
---|
53 | m_simplexSolver->reset(); |
---|
54 | btGjkPairDetector gjk(m_convexA,m_convexB1,m_convexA->getShapeType(),m_convexB1->getShapeType(),m_convexA->getMargin(),m_convexB1->getMargin(),m_simplexSolver,m_penetrationDepthSolver); |
---|
55 | btGjkPairDetector::ClosestPointInput input; |
---|
56 | input.m_transformA = transA; |
---|
57 | input.m_transformB = transB; |
---|
58 | gjk.getClosestPoints(input,pointCollector,0); |
---|
59 | } else |
---|
60 | { |
---|
61 | //convex versus plane |
---|
62 | const btConvexShape* convexShape = m_convexA; |
---|
63 | const btStaticPlaneShape* planeShape = m_planeShape; |
---|
64 | |
---|
65 | bool hasCollision = false; |
---|
66 | const btVector3& planeNormal = planeShape->getPlaneNormal(); |
---|
67 | const btScalar& planeConstant = planeShape->getPlaneConstant(); |
---|
68 | |
---|
69 | btTransform convexWorldTransform = transA; |
---|
70 | btTransform convexInPlaneTrans; |
---|
71 | convexInPlaneTrans= transB.inverse() * convexWorldTransform; |
---|
72 | btTransform planeInConvex; |
---|
73 | planeInConvex= convexWorldTransform.inverse() * transB; |
---|
74 | |
---|
75 | btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis()*-planeNormal); |
---|
76 | |
---|
77 | btVector3 vtxInPlane = convexInPlaneTrans(vtx); |
---|
78 | btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant); |
---|
79 | |
---|
80 | btVector3 vtxInPlaneProjected = vtxInPlane - distance*planeNormal; |
---|
81 | btVector3 vtxInPlaneWorld = transB * vtxInPlaneProjected; |
---|
82 | btVector3 normalOnSurfaceB = transB.getBasis() * planeNormal; |
---|
83 | |
---|
84 | pointCollector.addContactPoint( |
---|
85 | normalOnSurfaceB, |
---|
86 | vtxInPlaneWorld, |
---|
87 | distance); |
---|
88 | } |
---|
89 | } |
---|
90 | |
---|
91 | bool btContinuousConvexCollision::calcTimeOfImpact( |
---|
92 | const btTransform& fromA, |
---|
93 | const btTransform& toA, |
---|
94 | const btTransform& fromB, |
---|
95 | const btTransform& toB, |
---|
96 | CastResult& result) |
---|
97 | { |
---|
98 | |
---|
99 | |
---|
100 | /// compute linear and angular velocity for this interval, to interpolate |
---|
101 | btVector3 linVelA,angVelA,linVelB,angVelB; |
---|
102 | btTransformUtil::calculateVelocity(fromA,toA,btScalar(1.),linVelA,angVelA); |
---|
103 | btTransformUtil::calculateVelocity(fromB,toB,btScalar(1.),linVelB,angVelB); |
---|
104 | |
---|
105 | |
---|
106 | btScalar boundingRadiusA = m_convexA->getAngularMotionDisc(); |
---|
107 | btScalar boundingRadiusB = m_convexB1?m_convexB1->getAngularMotionDisc():0.f; |
---|
108 | |
---|
109 | btScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB; |
---|
110 | btVector3 relLinVel = (linVelB-linVelA); |
---|
111 | |
---|
112 | btScalar relLinVelocLength = (linVelB-linVelA).length(); |
---|
113 | |
---|
114 | if ((relLinVelocLength+maxAngularProjectedVelocity) == 0.f) |
---|
115 | return false; |
---|
116 | |
---|
117 | |
---|
118 | |
---|
119 | btScalar lambda = btScalar(0.); |
---|
120 | btVector3 v(1,0,0); |
---|
121 | |
---|
122 | int maxIter = MAX_ITERATIONS; |
---|
123 | |
---|
124 | btVector3 n; |
---|
125 | n.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
126 | bool hasResult = false; |
---|
127 | btVector3 c; |
---|
128 | |
---|
129 | btScalar lastLambda = lambda; |
---|
130 | //btScalar epsilon = btScalar(0.001); |
---|
131 | |
---|
132 | int numIter = 0; |
---|
133 | //first solution, using GJK |
---|
134 | |
---|
135 | |
---|
136 | btScalar radius = 0.001f; |
---|
137 | // result.drawCoordSystem(sphereTr); |
---|
138 | |
---|
139 | btPointCollector pointCollector1; |
---|
140 | |
---|
141 | { |
---|
142 | |
---|
143 | computeClosestPoints(fromA,fromB,pointCollector1); |
---|
144 | |
---|
145 | hasResult = pointCollector1.m_hasResult; |
---|
146 | c = pointCollector1.m_pointInWorld; |
---|
147 | } |
---|
148 | |
---|
149 | if (hasResult) |
---|
150 | { |
---|
151 | btScalar dist; |
---|
152 | dist = pointCollector1.m_distance + result.m_allowedPenetration; |
---|
153 | n = pointCollector1.m_normalOnBInWorld; |
---|
154 | btScalar projectedLinearVelocity = relLinVel.dot(n); |
---|
155 | if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON) |
---|
156 | return false; |
---|
157 | |
---|
158 | //not close enough |
---|
159 | while (dist > radius) |
---|
160 | { |
---|
161 | if (result.m_debugDrawer) |
---|
162 | { |
---|
163 | result.m_debugDrawer->drawSphere(c,0.2f,btVector3(1,1,1)); |
---|
164 | } |
---|
165 | btScalar dLambda = btScalar(0.); |
---|
166 | |
---|
167 | projectedLinearVelocity = relLinVel.dot(n); |
---|
168 | |
---|
169 | |
---|
170 | //don't report time of impact for motion away from the contact normal (or causes minor penetration) |
---|
171 | if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON) |
---|
172 | return false; |
---|
173 | |
---|
174 | dLambda = dist / (projectedLinearVelocity+ maxAngularProjectedVelocity); |
---|
175 | |
---|
176 | |
---|
177 | |
---|
178 | lambda = lambda + dLambda; |
---|
179 | |
---|
180 | if (lambda > btScalar(1.)) |
---|
181 | return false; |
---|
182 | |
---|
183 | if (lambda < btScalar(0.)) |
---|
184 | return false; |
---|
185 | |
---|
186 | |
---|
187 | //todo: next check with relative epsilon |
---|
188 | if (lambda <= lastLambda) |
---|
189 | { |
---|
190 | return false; |
---|
191 | //n.setValue(0,0,0); |
---|
192 | break; |
---|
193 | } |
---|
194 | lastLambda = lambda; |
---|
195 | |
---|
196 | |
---|
197 | |
---|
198 | //interpolate to next lambda |
---|
199 | btTransform interpolatedTransA,interpolatedTransB,relativeTrans; |
---|
200 | |
---|
201 | btTransformUtil::integrateTransform(fromA,linVelA,angVelA,lambda,interpolatedTransA); |
---|
202 | btTransformUtil::integrateTransform(fromB,linVelB,angVelB,lambda,interpolatedTransB); |
---|
203 | relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA); |
---|
204 | |
---|
205 | if (result.m_debugDrawer) |
---|
206 | { |
---|
207 | result.m_debugDrawer->drawSphere(interpolatedTransA.getOrigin(),0.2f,btVector3(1,0,0)); |
---|
208 | } |
---|
209 | |
---|
210 | result.DebugDraw( lambda ); |
---|
211 | |
---|
212 | btPointCollector pointCollector; |
---|
213 | computeClosestPoints(interpolatedTransA,interpolatedTransB,pointCollector); |
---|
214 | |
---|
215 | if (pointCollector.m_hasResult) |
---|
216 | { |
---|
217 | dist = pointCollector.m_distance+result.m_allowedPenetration; |
---|
218 | c = pointCollector.m_pointInWorld; |
---|
219 | n = pointCollector.m_normalOnBInWorld; |
---|
220 | } else |
---|
221 | { |
---|
222 | result.reportFailure(-1, numIter); |
---|
223 | return false; |
---|
224 | } |
---|
225 | |
---|
226 | numIter++; |
---|
227 | if (numIter > maxIter) |
---|
228 | { |
---|
229 | result.reportFailure(-2, numIter); |
---|
230 | return false; |
---|
231 | } |
---|
232 | } |
---|
233 | |
---|
234 | result.m_fraction = lambda; |
---|
235 | result.m_normal = n; |
---|
236 | result.m_hitPoint = c; |
---|
237 | return true; |
---|
238 | } |
---|
239 | |
---|
240 | return false; |
---|
241 | |
---|
242 | } |
---|
243 | |
---|