1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | #include "btGjkPairDetector.h" |
---|
17 | #include "BulletCollision/CollisionShapes/btConvexShape.h" |
---|
18 | #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h" |
---|
19 | #include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h" |
---|
20 | |
---|
21 | |
---|
22 | |
---|
23 | #if defined(DEBUG) || defined (_DEBUG) |
---|
24 | //#define TEST_NON_VIRTUAL 1 |
---|
25 | #include <stdio.h> //for debug printf |
---|
26 | #ifdef __SPU__ |
---|
27 | #include <spu_printf.h> |
---|
28 | #define printf spu_printf |
---|
29 | //#define DEBUG_SPU_COLLISION_DETECTION 1 |
---|
30 | #endif //__SPU__ |
---|
31 | #endif |
---|
32 | |
---|
33 | //must be above the machine epsilon |
---|
34 | #define REL_ERROR2 btScalar(1.0e-6) |
---|
35 | |
---|
36 | //temp globals, to improve GJK/EPA/penetration calculations |
---|
37 | int gNumDeepPenetrationChecks = 0; |
---|
38 | int gNumGjkChecks = 0; |
---|
39 | |
---|
40 | |
---|
41 | btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver) |
---|
42 | :m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)), |
---|
43 | m_penetrationDepthSolver(penetrationDepthSolver), |
---|
44 | m_simplexSolver(simplexSolver), |
---|
45 | m_minkowskiA(objectA), |
---|
46 | m_minkowskiB(objectB), |
---|
47 | m_shapeTypeA(objectA->getShapeType()), |
---|
48 | m_shapeTypeB(objectB->getShapeType()), |
---|
49 | m_marginA(objectA->getMargin()), |
---|
50 | m_marginB(objectB->getMargin()), |
---|
51 | m_ignoreMargin(false), |
---|
52 | m_lastUsedMethod(-1), |
---|
53 | m_catchDegeneracies(1) |
---|
54 | { |
---|
55 | } |
---|
56 | btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,int shapeTypeA,int shapeTypeB,btScalar marginA, btScalar marginB, btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver) |
---|
57 | :m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)), |
---|
58 | m_penetrationDepthSolver(penetrationDepthSolver), |
---|
59 | m_simplexSolver(simplexSolver), |
---|
60 | m_minkowskiA(objectA), |
---|
61 | m_minkowskiB(objectB), |
---|
62 | m_shapeTypeA(shapeTypeA), |
---|
63 | m_shapeTypeB(shapeTypeB), |
---|
64 | m_marginA(marginA), |
---|
65 | m_marginB(marginB), |
---|
66 | m_ignoreMargin(false), |
---|
67 | m_lastUsedMethod(-1), |
---|
68 | m_catchDegeneracies(1) |
---|
69 | { |
---|
70 | } |
---|
71 | |
---|
72 | void btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults) |
---|
73 | { |
---|
74 | (void)swapResults; |
---|
75 | |
---|
76 | getClosestPointsNonVirtual(input,output,debugDraw); |
---|
77 | } |
---|
78 | |
---|
79 | #ifdef __SPU__ |
---|
80 | void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw) |
---|
81 | #else |
---|
82 | void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw) |
---|
83 | #endif |
---|
84 | { |
---|
85 | m_cachedSeparatingDistance = 0.f; |
---|
86 | |
---|
87 | btScalar distance=btScalar(0.); |
---|
88 | btVector3 normalInB(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
89 | btVector3 pointOnA,pointOnB; |
---|
90 | btTransform localTransA = input.m_transformA; |
---|
91 | btTransform localTransB = input.m_transformB; |
---|
92 | btVector3 positionOffset = (localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5); |
---|
93 | localTransA.getOrigin() -= positionOffset; |
---|
94 | localTransB.getOrigin() -= positionOffset; |
---|
95 | |
---|
96 | bool check2d = m_minkowskiA->isConvex2d() && m_minkowskiB->isConvex2d(); |
---|
97 | |
---|
98 | btScalar marginA = m_marginA; |
---|
99 | btScalar marginB = m_marginB; |
---|
100 | |
---|
101 | gNumGjkChecks++; |
---|
102 | |
---|
103 | #ifdef DEBUG_SPU_COLLISION_DETECTION |
---|
104 | spu_printf("inside gjk\n"); |
---|
105 | #endif |
---|
106 | //for CCD we don't use margins |
---|
107 | if (m_ignoreMargin) |
---|
108 | { |
---|
109 | marginA = btScalar(0.); |
---|
110 | marginB = btScalar(0.); |
---|
111 | #ifdef DEBUG_SPU_COLLISION_DETECTION |
---|
112 | spu_printf("ignoring margin\n"); |
---|
113 | #endif |
---|
114 | } |
---|
115 | |
---|
116 | m_curIter = 0; |
---|
117 | int gGjkMaxIter = 1000;//this is to catch invalid input, perhaps check for #NaN? |
---|
118 | m_cachedSeparatingAxis.setValue(0,1,0); |
---|
119 | |
---|
120 | bool isValid = false; |
---|
121 | bool checkSimplex = false; |
---|
122 | bool checkPenetration = true; |
---|
123 | m_degenerateSimplex = 0; |
---|
124 | |
---|
125 | m_lastUsedMethod = -1; |
---|
126 | |
---|
127 | { |
---|
128 | btScalar squaredDistance = BT_LARGE_FLOAT; |
---|
129 | btScalar delta = btScalar(0.); |
---|
130 | |
---|
131 | btScalar margin = marginA + marginB; |
---|
132 | |
---|
133 | |
---|
134 | |
---|
135 | m_simplexSolver->reset(); |
---|
136 | |
---|
137 | for ( ; ; ) |
---|
138 | //while (true) |
---|
139 | { |
---|
140 | |
---|
141 | btVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* input.m_transformA.getBasis(); |
---|
142 | btVector3 seperatingAxisInB = m_cachedSeparatingAxis* input.m_transformB.getBasis(); |
---|
143 | |
---|
144 | #if 1 |
---|
145 | |
---|
146 | btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA); |
---|
147 | btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB); |
---|
148 | |
---|
149 | // btVector3 pInA = localGetSupportingVertexWithoutMargin(m_shapeTypeA, m_minkowskiA, seperatingAxisInA,input.m_convexVertexData[0]);//, &featureIndexA); |
---|
150 | // btVector3 qInB = localGetSupportingVertexWithoutMargin(m_shapeTypeB, m_minkowskiB, seperatingAxisInB,input.m_convexVertexData[1]);//, &featureIndexB); |
---|
151 | |
---|
152 | #else |
---|
153 | #ifdef __SPU__ |
---|
154 | btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA); |
---|
155 | btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB); |
---|
156 | #else |
---|
157 | btVector3 pInA = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA); |
---|
158 | btVector3 qInB = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB); |
---|
159 | #ifdef TEST_NON_VIRTUAL |
---|
160 | btVector3 pInAv = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA); |
---|
161 | btVector3 qInBv = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB); |
---|
162 | btAssert((pInAv-pInA).length() < 0.0001); |
---|
163 | btAssert((qInBv-qInB).length() < 0.0001); |
---|
164 | #endif // |
---|
165 | #endif //__SPU__ |
---|
166 | #endif |
---|
167 | |
---|
168 | |
---|
169 | btVector3 pWorld = localTransA(pInA); |
---|
170 | btVector3 qWorld = localTransB(qInB); |
---|
171 | |
---|
172 | #ifdef DEBUG_SPU_COLLISION_DETECTION |
---|
173 | spu_printf("got local supporting vertices\n"); |
---|
174 | #endif |
---|
175 | |
---|
176 | if (check2d) |
---|
177 | { |
---|
178 | pWorld[2] = 0.f; |
---|
179 | qWorld[2] = 0.f; |
---|
180 | } |
---|
181 | |
---|
182 | btVector3 w = pWorld - qWorld; |
---|
183 | delta = m_cachedSeparatingAxis.dot(w); |
---|
184 | |
---|
185 | // potential exit, they don't overlap |
---|
186 | if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared)) |
---|
187 | { |
---|
188 | m_degenerateSimplex = 10; |
---|
189 | checkSimplex=true; |
---|
190 | //checkPenetration = false; |
---|
191 | break; |
---|
192 | } |
---|
193 | |
---|
194 | //exit 0: the new point is already in the simplex, or we didn't come any closer |
---|
195 | if (m_simplexSolver->inSimplex(w)) |
---|
196 | { |
---|
197 | m_degenerateSimplex = 1; |
---|
198 | checkSimplex = true; |
---|
199 | break; |
---|
200 | } |
---|
201 | // are we getting any closer ? |
---|
202 | btScalar f0 = squaredDistance - delta; |
---|
203 | btScalar f1 = squaredDistance * REL_ERROR2; |
---|
204 | |
---|
205 | if (f0 <= f1) |
---|
206 | { |
---|
207 | if (f0 <= btScalar(0.)) |
---|
208 | { |
---|
209 | m_degenerateSimplex = 2; |
---|
210 | } else |
---|
211 | { |
---|
212 | m_degenerateSimplex = 11; |
---|
213 | } |
---|
214 | checkSimplex = true; |
---|
215 | break; |
---|
216 | } |
---|
217 | |
---|
218 | #ifdef DEBUG_SPU_COLLISION_DETECTION |
---|
219 | spu_printf("addVertex 1\n"); |
---|
220 | #endif |
---|
221 | //add current vertex to simplex |
---|
222 | m_simplexSolver->addVertex(w, pWorld, qWorld); |
---|
223 | #ifdef DEBUG_SPU_COLLISION_DETECTION |
---|
224 | spu_printf("addVertex 2\n"); |
---|
225 | #endif |
---|
226 | btVector3 newCachedSeparatingAxis; |
---|
227 | |
---|
228 | //calculate the closest point to the origin (update vector v) |
---|
229 | if (!m_simplexSolver->closest(newCachedSeparatingAxis)) |
---|
230 | { |
---|
231 | m_degenerateSimplex = 3; |
---|
232 | checkSimplex = true; |
---|
233 | break; |
---|
234 | } |
---|
235 | |
---|
236 | if(newCachedSeparatingAxis.length2()<REL_ERROR2) |
---|
237 | { |
---|
238 | m_cachedSeparatingAxis = newCachedSeparatingAxis; |
---|
239 | m_degenerateSimplex = 6; |
---|
240 | checkSimplex = true; |
---|
241 | break; |
---|
242 | } |
---|
243 | |
---|
244 | btScalar previousSquaredDistance = squaredDistance; |
---|
245 | squaredDistance = newCachedSeparatingAxis.length2(); |
---|
246 | #if 0 |
---|
247 | ///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo |
---|
248 | if (squaredDistance>previousSquaredDistance) |
---|
249 | { |
---|
250 | m_degenerateSimplex = 7; |
---|
251 | squaredDistance = previousSquaredDistance; |
---|
252 | checkSimplex = false; |
---|
253 | break; |
---|
254 | } |
---|
255 | #endif // |
---|
256 | |
---|
257 | |
---|
258 | //redundant m_simplexSolver->compute_points(pointOnA, pointOnB); |
---|
259 | |
---|
260 | //are we getting any closer ? |
---|
261 | if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance) |
---|
262 | { |
---|
263 | // m_simplexSolver->backup_closest(m_cachedSeparatingAxis); |
---|
264 | checkSimplex = true; |
---|
265 | m_degenerateSimplex = 12; |
---|
266 | |
---|
267 | break; |
---|
268 | } |
---|
269 | |
---|
270 | m_cachedSeparatingAxis = newCachedSeparatingAxis; |
---|
271 | |
---|
272 | //degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject |
---|
273 | if (m_curIter++ > gGjkMaxIter) |
---|
274 | { |
---|
275 | #if defined(DEBUG) || defined (_DEBUG) || defined (DEBUG_SPU_COLLISION_DETECTION) |
---|
276 | |
---|
277 | printf("btGjkPairDetector maxIter exceeded:%i\n",m_curIter); |
---|
278 | printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n", |
---|
279 | m_cachedSeparatingAxis.getX(), |
---|
280 | m_cachedSeparatingAxis.getY(), |
---|
281 | m_cachedSeparatingAxis.getZ(), |
---|
282 | squaredDistance, |
---|
283 | m_minkowskiA->getShapeType(), |
---|
284 | m_minkowskiB->getShapeType()); |
---|
285 | |
---|
286 | #endif |
---|
287 | break; |
---|
288 | |
---|
289 | } |
---|
290 | |
---|
291 | |
---|
292 | bool check = (!m_simplexSolver->fullSimplex()); |
---|
293 | //bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex()); |
---|
294 | |
---|
295 | if (!check) |
---|
296 | { |
---|
297 | //do we need this backup_closest here ? |
---|
298 | // m_simplexSolver->backup_closest(m_cachedSeparatingAxis); |
---|
299 | m_degenerateSimplex = 13; |
---|
300 | break; |
---|
301 | } |
---|
302 | } |
---|
303 | |
---|
304 | if (checkSimplex) |
---|
305 | { |
---|
306 | m_simplexSolver->compute_points(pointOnA, pointOnB); |
---|
307 | normalInB = m_cachedSeparatingAxis; |
---|
308 | btScalar lenSqr =m_cachedSeparatingAxis.length2(); |
---|
309 | |
---|
310 | //valid normal |
---|
311 | if (lenSqr < 0.0001) |
---|
312 | { |
---|
313 | m_degenerateSimplex = 5; |
---|
314 | } |
---|
315 | if (lenSqr > SIMD_EPSILON*SIMD_EPSILON) |
---|
316 | { |
---|
317 | btScalar rlen = btScalar(1.) / btSqrt(lenSqr ); |
---|
318 | normalInB *= rlen; //normalize |
---|
319 | btScalar s = btSqrt(squaredDistance); |
---|
320 | |
---|
321 | btAssert(s > btScalar(0.0)); |
---|
322 | pointOnA -= m_cachedSeparatingAxis * (marginA / s); |
---|
323 | pointOnB += m_cachedSeparatingAxis * (marginB / s); |
---|
324 | distance = ((btScalar(1.)/rlen) - margin); |
---|
325 | isValid = true; |
---|
326 | |
---|
327 | m_lastUsedMethod = 1; |
---|
328 | } else |
---|
329 | { |
---|
330 | m_lastUsedMethod = 2; |
---|
331 | } |
---|
332 | } |
---|
333 | |
---|
334 | bool catchDegeneratePenetrationCase = |
---|
335 | (m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance+margin) < 0.01)); |
---|
336 | |
---|
337 | //if (checkPenetration && !isValid) |
---|
338 | if (checkPenetration && (!isValid || catchDegeneratePenetrationCase )) |
---|
339 | { |
---|
340 | //penetration case |
---|
341 | |
---|
342 | //if there is no way to handle penetrations, bail out |
---|
343 | if (m_penetrationDepthSolver) |
---|
344 | { |
---|
345 | // Penetration depth case. |
---|
346 | btVector3 tmpPointOnA,tmpPointOnB; |
---|
347 | |
---|
348 | gNumDeepPenetrationChecks++; |
---|
349 | m_cachedSeparatingAxis.setZero(); |
---|
350 | |
---|
351 | bool isValid2 = m_penetrationDepthSolver->calcPenDepth( |
---|
352 | *m_simplexSolver, |
---|
353 | m_minkowskiA,m_minkowskiB, |
---|
354 | localTransA,localTransB, |
---|
355 | m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB, |
---|
356 | debugDraw,input.m_stackAlloc |
---|
357 | ); |
---|
358 | |
---|
359 | |
---|
360 | if (isValid2) |
---|
361 | { |
---|
362 | btVector3 tmpNormalInB = tmpPointOnB-tmpPointOnA; |
---|
363 | btScalar lenSqr = tmpNormalInB.length2(); |
---|
364 | if (lenSqr <= (SIMD_EPSILON*SIMD_EPSILON)) |
---|
365 | { |
---|
366 | tmpNormalInB = m_cachedSeparatingAxis; |
---|
367 | lenSqr = m_cachedSeparatingAxis.length2(); |
---|
368 | } |
---|
369 | |
---|
370 | if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON)) |
---|
371 | { |
---|
372 | tmpNormalInB /= btSqrt(lenSqr); |
---|
373 | btScalar distance2 = -(tmpPointOnA-tmpPointOnB).length(); |
---|
374 | //only replace valid penetrations when the result is deeper (check) |
---|
375 | if (!isValid || (distance2 < distance)) |
---|
376 | { |
---|
377 | distance = distance2; |
---|
378 | pointOnA = tmpPointOnA; |
---|
379 | pointOnB = tmpPointOnB; |
---|
380 | normalInB = tmpNormalInB; |
---|
381 | isValid = true; |
---|
382 | m_lastUsedMethod = 3; |
---|
383 | } else |
---|
384 | { |
---|
385 | m_lastUsedMethod = 8; |
---|
386 | } |
---|
387 | } else |
---|
388 | { |
---|
389 | m_lastUsedMethod = 9; |
---|
390 | } |
---|
391 | } else |
---|
392 | |
---|
393 | { |
---|
394 | ///this is another degenerate case, where the initial GJK calculation reports a degenerate case |
---|
395 | ///EPA reports no penetration, and the second GJK (using the supporting vector without margin) |
---|
396 | ///reports a valid positive distance. Use the results of the second GJK instead of failing. |
---|
397 | ///thanks to Jacob.Langford for the reproduction case |
---|
398 | ///http://code.google.com/p/bullet/issues/detail?id=250 |
---|
399 | |
---|
400 | |
---|
401 | if (m_cachedSeparatingAxis.length2() > btScalar(0.)) |
---|
402 | { |
---|
403 | btScalar distance2 = (tmpPointOnA-tmpPointOnB).length()-margin; |
---|
404 | //only replace valid distances when the distance is less |
---|
405 | if (!isValid || (distance2 < distance)) |
---|
406 | { |
---|
407 | distance = distance2; |
---|
408 | pointOnA = tmpPointOnA; |
---|
409 | pointOnB = tmpPointOnB; |
---|
410 | pointOnA -= m_cachedSeparatingAxis * marginA ; |
---|
411 | pointOnB += m_cachedSeparatingAxis * marginB ; |
---|
412 | normalInB = m_cachedSeparatingAxis; |
---|
413 | normalInB.normalize(); |
---|
414 | isValid = true; |
---|
415 | m_lastUsedMethod = 6; |
---|
416 | } else |
---|
417 | { |
---|
418 | m_lastUsedMethod = 5; |
---|
419 | } |
---|
420 | } |
---|
421 | } |
---|
422 | |
---|
423 | } |
---|
424 | |
---|
425 | } |
---|
426 | } |
---|
427 | |
---|
428 | |
---|
429 | |
---|
430 | if (isValid && ((distance < 0) || (distance*distance < input.m_maximumDistanceSquared))) |
---|
431 | { |
---|
432 | #if 0 |
---|
433 | ///some debugging |
---|
434 | // if (check2d) |
---|
435 | { |
---|
436 | printf("n = %2.3f,%2.3f,%2.3f. ",normalInB[0],normalInB[1],normalInB[2]); |
---|
437 | printf("distance = %2.3f exit=%d deg=%d\n",distance,m_lastUsedMethod,m_degenerateSimplex); |
---|
438 | } |
---|
439 | #endif |
---|
440 | |
---|
441 | m_cachedSeparatingAxis = normalInB; |
---|
442 | m_cachedSeparatingDistance = distance; |
---|
443 | |
---|
444 | output.addContactPoint( |
---|
445 | normalInB, |
---|
446 | pointOnB+positionOffset, |
---|
447 | distance); |
---|
448 | |
---|
449 | } |
---|
450 | |
---|
451 | |
---|
452 | } |
---|
453 | |
---|
454 | |
---|
455 | |
---|
456 | |
---|
457 | |
---|