Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: code/trunk/src/external/bullet/BulletDynamics/ConstraintSolver/btConeTwistConstraint.h @ 10082

Last change on this file since 10082 was 8393, checked in by rgrieder, 14 years ago

Updated Bullet from v2.77 to v2.78.
(I'm not going to make a branch for that since the update from 2.74 to 2.77 hasn't been tested that much either).

You will HAVE to do a complete RECOMPILE! I tested with MSVC and MinGW and they both threw linker errors at me.

  • Property svn:eol-style set to native
File size: 9.3 KB
RevLine 
[1963]1/*
2Bullet Continuous Collision Detection and Physics Library
3btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios
4
5This software is provided 'as-is', without any express or implied warranty.
6In no event will the authors be held liable for any damages arising from the use of this software.
7Permission is granted to anyone to use this software for any purpose,
8including commercial applications, and to alter it and redistribute it freely,
9subject to the following restrictions:
10
111. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
122. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
133. This notice may not be removed or altered from any source distribution.
14
15Written by: Marcus Hennix
16*/
17
18
19
[8351]20/*
21Overview:
22
23btConeTwistConstraint can be used to simulate ragdoll joints (upper arm, leg etc).
24It is a fixed translation, 3 degree-of-freedom (DOF) rotational "joint".
25It divides the 3 rotational DOFs into swing (movement within a cone) and twist.
26Swing is divided into swing1 and swing2 which can have different limits, giving an elliptical shape.
27(Note: the cone's base isn't flat, so this ellipse is "embedded" on the surface of a sphere.)
28
29In the contraint's frame of reference:
30twist is along the x-axis,
31and swing 1 and 2 are along the z and y axes respectively.
32*/
33
34
35
[8393]36#ifndef BT_CONETWISTCONSTRAINT_H
37#define BT_CONETWISTCONSTRAINT_H
[1963]38
[2430]39#include "LinearMath/btVector3.h"
[1963]40#include "btJacobianEntry.h"
41#include "btTypedConstraint.h"
42
43class btRigidBody;
44
[8351]45enum btConeTwistFlags
46{
47        BT_CONETWIST_FLAGS_LIN_CFM = 1,
48        BT_CONETWIST_FLAGS_LIN_ERP = 2,
49        BT_CONETWIST_FLAGS_ANG_CFM = 4
50};
[1963]51
52///btConeTwistConstraint can be used to simulate ragdoll joints (upper arm, leg etc)
53class btConeTwistConstraint : public btTypedConstraint
54{
55#ifdef IN_PARALLELL_SOLVER
56public:
57#endif
58        btJacobianEntry m_jac[3]; //3 orthogonal linear constraints
59
60        btTransform m_rbAFrame; 
61        btTransform m_rbBFrame;
62
63        btScalar        m_limitSoftness;
64        btScalar        m_biasFactor;
65        btScalar        m_relaxationFactor;
66
[2882]67        btScalar        m_damping;
68
[1963]69        btScalar        m_swingSpan1;
70        btScalar        m_swingSpan2;
71        btScalar        m_twistSpan;
72
[2882]73        btScalar        m_fixThresh;
74
[1963]75        btVector3   m_swingAxis;
76        btVector3       m_twistAxis;
77
78        btScalar        m_kSwing;
79        btScalar        m_kTwist;
80
81        btScalar        m_twistLimitSign;
82        btScalar        m_swingCorrection;
83        btScalar        m_twistCorrection;
84
[2882]85        btScalar        m_twistAngle;
86
[1963]87        btScalar        m_accSwingLimitImpulse;
88        btScalar        m_accTwistLimitImpulse;
89
90        bool            m_angularOnly;
91        bool            m_solveTwistLimit;
92        bool            m_solveSwingLimit;
93
[2882]94        bool    m_useSolveConstraintObsolete;
95
96        // not yet used...
97        btScalar        m_swingLimitRatio;
98        btScalar        m_twistLimitRatio;
99        btVector3   m_twistAxisA;
100
101        // motor
102        bool             m_bMotorEnabled;
103        bool             m_bNormalizedMotorStrength;
104        btQuaternion m_qTarget;
105        btScalar         m_maxMotorImpulse;
106        btVector3        m_accMotorImpulse;
[1963]107       
[8351]108        // parameters
109        int                     m_flags;
110        btScalar        m_linCFM;
111        btScalar        m_linERP;
112        btScalar        m_angCFM;
113       
114protected:
115
116        void init();
117
118        void computeConeLimitInfo(const btQuaternion& qCone, // in
119                btScalar& swingAngle, btVector3& vSwingAxis, btScalar& swingLimit); // all outs
120
121        void computeTwistLimitInfo(const btQuaternion& qTwist, // in
122                btScalar& twistAngle, btVector3& vTwistAxis); // all outs
123
124        void adjustSwingAxisToUseEllipseNormal(btVector3& vSwingAxis) const;
125
126
[1963]127public:
128
129        btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB,const btTransform& rbAFrame, const btTransform& rbBFrame);
130       
131        btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame);
132
133        virtual void    buildJacobian();
134
[2882]135        virtual void getInfo1 (btConstraintInfo1* info);
[8351]136
137        void    getInfo1NonVirtual(btConstraintInfo1* info);
[2882]138       
139        virtual void getInfo2 (btConstraintInfo2* info);
140       
[8351]141        void    getInfo2NonVirtual(btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB);
[1963]142
[8351]143        virtual void    solveConstraintObsolete(btRigidBody& bodyA,btRigidBody& bodyB,btScalar  timeStep);
[2882]144
[1963]145        void    updateRHS(btScalar      timeStep);
146
[8393]147
[1963]148        const btRigidBody& getRigidBodyA() const
149        {
150                return m_rbA;
151        }
152        const btRigidBody& getRigidBodyB() const
153        {
154                return m_rbB;
155        }
156
157        void    setAngularOnly(bool angularOnly)
158        {
159                m_angularOnly = angularOnly;
160        }
161
[2882]162        void    setLimit(int limitIndex,btScalar limitValue)
[1963]163        {
[2882]164                switch (limitIndex)
165                {
166                case 3:
167                        {
168                                m_twistSpan = limitValue;
169                                break;
170                        }
171                case 4:
172                        {
173                                m_swingSpan2 = limitValue;
174                                break;
175                        }
176                case 5:
177                        {
178                                m_swingSpan1 = limitValue;
179                                break;
180                        }
181                default:
182                        {
183                        }
184                };
185        }
186
[8351]187        // setLimit(), a few notes:
188        // _softness:
189        //              0->1, recommend ~0.8->1.
190        //              describes % of limits where movement is free.
191        //              beyond this softness %, the limit is gradually enforced until the "hard" (1.0) limit is reached.
192        // _biasFactor:
193        //              0->1?, recommend 0.3 +/-0.3 or so.
194        //              strength with which constraint resists zeroth order (angular, not angular velocity) limit violation.
195        // __relaxationFactor:
196        //              0->1, recommend to stay near 1.
197        //              the lower the value, the less the constraint will fight velocities which violate the angular limits.
198        void    setLimit(btScalar _swingSpan1,btScalar _swingSpan2,btScalar _twistSpan, btScalar _softness = 1.f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f)
[2882]199        {
[1963]200                m_swingSpan1 = _swingSpan1;
201                m_swingSpan2 = _swingSpan2;
202                m_twistSpan  = _twistSpan;
203
204                m_limitSoftness =  _softness;
205                m_biasFactor = _biasFactor;
206                m_relaxationFactor = _relaxationFactor;
207        }
208
209        const btTransform& getAFrame() { return m_rbAFrame; }; 
210        const btTransform& getBFrame() { return m_rbBFrame; };
211
212        inline int getSolveTwistLimit()
213        {
214                return m_solveTwistLimit;
215        }
216
217        inline int getSolveSwingLimit()
218        {
219                return m_solveTwistLimit;
220        }
221
222        inline btScalar getTwistLimitSign()
223        {
224                return m_twistLimitSign;
225        }
226
[2882]227        void calcAngleInfo();
[8351]228        void calcAngleInfo2(const btTransform& transA, const btTransform& transB,const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB);
[2882]229
230        inline btScalar getSwingSpan1()
231        {
232                return m_swingSpan1;
233        }
234        inline btScalar getSwingSpan2()
235        {
236                return m_swingSpan2;
237        }
238        inline btScalar getTwistSpan()
239        {
240                return m_twistSpan;
241        }
242        inline btScalar getTwistAngle()
243        {
244                return m_twistAngle;
245        }
246        bool isPastSwingLimit() { return m_solveSwingLimit; }
247
248        void setDamping(btScalar damping) { m_damping = damping; }
249
250        void enableMotor(bool b) { m_bMotorEnabled = b; }
251        void setMaxMotorImpulse(btScalar maxMotorImpulse) { m_maxMotorImpulse = maxMotorImpulse; m_bNormalizedMotorStrength = false; }
252        void setMaxMotorImpulseNormalized(btScalar maxMotorImpulse) { m_maxMotorImpulse = maxMotorImpulse; m_bNormalizedMotorStrength = true; }
253
254        btScalar getFixThresh() { return m_fixThresh; }
255        void setFixThresh(btScalar fixThresh) { m_fixThresh = fixThresh; }
256
257        // setMotorTarget:
258        // q: the desired rotation of bodyA wrt bodyB.
259        // note: if q violates the joint limits, the internal target is clamped to avoid conflicting impulses (very bad for stability)
260        // note: don't forget to enableMotor()
261        void setMotorTarget(const btQuaternion &q);
262
263        // same as above, but q is the desired rotation of frameA wrt frameB in constraint space
264        void setMotorTargetInConstraintSpace(const btQuaternion &q);
265
266        btVector3 GetPointForAngle(btScalar fAngleInRadians, btScalar fLength) const;
267
[8351]268        ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
269        ///If no axis is provided, it uses the default axis for this constraint.
270        virtual void setParam(int num, btScalar value, int axis = -1);
[8393]271
272        virtual void setFrames(const btTransform& frameA, const btTransform& frameB);
273
274        const btTransform& getFrameOffsetA() const
275        {
276                return m_rbAFrame;
277        }
278
279        const btTransform& getFrameOffsetB() const
280        {
281                return m_rbBFrame;
282        }
283
284
[8351]285        ///return the local value of parameter
286        virtual btScalar getParam(int num, int axis = -1) const;
[2882]287
[8351]288        virtual int     calculateSerializeBufferSize() const;
[2882]289
[8351]290        ///fills the dataBuffer and returns the struct name (and 0 on failure)
291        virtual const char*     serialize(void* dataBuffer, btSerializer* serializer) const;
[2882]292
[8351]293};
[2882]294
[8351]295///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
296struct  btConeTwistConstraintData
297{
298        btTypedConstraintData   m_typeConstraintData;
299        btTransformFloatData m_rbAFrame;
300        btTransformFloatData m_rbBFrame;
[2882]301
[8351]302        //limits
303        float   m_swingSpan1;
304        float   m_swingSpan2;
305        float   m_twistSpan;
306        float   m_limitSoftness;
307        float   m_biasFactor;
308        float   m_relaxationFactor;
309
310        float   m_damping;
311               
312        char m_pad[4];
313
[1963]314};
[8351]315       
[1963]316
[8351]317
318SIMD_FORCE_INLINE int   btConeTwistConstraint::calculateSerializeBufferSize() const
319{
320        return sizeof(btConeTwistConstraintData);
321
322}
323
324
325        ///fills the dataBuffer and returns the struct name (and 0 on failure)
326SIMD_FORCE_INLINE const char*   btConeTwistConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
327{
328        btConeTwistConstraintData* cone = (btConeTwistConstraintData*) dataBuffer;
329        btTypedConstraint::serialize(&cone->m_typeConstraintData,serializer);
330
331        m_rbAFrame.serializeFloat(cone->m_rbAFrame);
332        m_rbBFrame.serializeFloat(cone->m_rbBFrame);
333       
334        cone->m_swingSpan1 = float(m_swingSpan1);
335        cone->m_swingSpan2 = float(m_swingSpan2);
336        cone->m_twistSpan = float(m_twistSpan);
337        cone->m_limitSoftness = float(m_limitSoftness);
338        cone->m_biasFactor = float(m_biasFactor);
339        cone->m_relaxationFactor = float(m_relaxationFactor);
340        cone->m_damping = float(m_damping);
341
342        return "btConeTwistConstraintData";
343}
344
345
[8393]346#endif //BT_CONETWISTCONSTRAINT_H
Note: See TracBrowser for help on using the repository browser.