[1963] | 1 | /* |
---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 4 | |
---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 9 | subject to the following restrictions: |
---|
| 10 | |
---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 14 | */ |
---|
| 15 | /* |
---|
| 16 | 2007-09-09 |
---|
| 17 | btGeneric6DofConstraint Refactored by Francisco Le?n |
---|
| 18 | email: projectileman@yahoo.com |
---|
| 19 | http://gimpact.sf.net |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | #ifndef GENERIC_6DOF_CONSTRAINT_H |
---|
| 24 | #define GENERIC_6DOF_CONSTRAINT_H |
---|
| 25 | |
---|
| 26 | #include "LinearMath/btVector3.h" |
---|
| 27 | #include "btJacobianEntry.h" |
---|
| 28 | #include "btTypedConstraint.h" |
---|
| 29 | |
---|
| 30 | class btRigidBody; |
---|
| 31 | |
---|
| 32 | |
---|
[2882] | 33 | |
---|
| 34 | |
---|
[1963] | 35 | //! Rotation Limit structure for generic joints |
---|
| 36 | class btRotationalLimitMotor |
---|
| 37 | { |
---|
| 38 | public: |
---|
| 39 | //! limit_parameters |
---|
| 40 | //!@{ |
---|
| 41 | btScalar m_loLimit;//!< joint limit |
---|
| 42 | btScalar m_hiLimit;//!< joint limit |
---|
| 43 | btScalar m_targetVelocity;//!< target motor velocity |
---|
| 44 | btScalar m_maxMotorForce;//!< max force on motor |
---|
| 45 | btScalar m_maxLimitForce;//!< max force on limit |
---|
| 46 | btScalar m_damping;//!< Damping. |
---|
| 47 | btScalar m_limitSoftness;//! Relaxation factor |
---|
| 48 | btScalar m_ERP;//!< Error tolerance factor when joint is at limit |
---|
| 49 | btScalar m_bounce;//!< restitution factor |
---|
| 50 | bool m_enableMotor; |
---|
| 51 | |
---|
| 52 | //!@} |
---|
| 53 | |
---|
| 54 | //! temp_variables |
---|
| 55 | //!@{ |
---|
| 56 | btScalar m_currentLimitError;//! How much is violated this limit |
---|
| 57 | int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit |
---|
| 58 | btScalar m_accumulatedImpulse; |
---|
| 59 | //!@} |
---|
| 60 | |
---|
| 61 | btRotationalLimitMotor() |
---|
| 62 | { |
---|
| 63 | m_accumulatedImpulse = 0.f; |
---|
| 64 | m_targetVelocity = 0; |
---|
| 65 | m_maxMotorForce = 0.1f; |
---|
| 66 | m_maxLimitForce = 300.0f; |
---|
| 67 | m_loLimit = -SIMD_INFINITY; |
---|
| 68 | m_hiLimit = SIMD_INFINITY; |
---|
| 69 | m_ERP = 0.5f; |
---|
| 70 | m_bounce = 0.0f; |
---|
| 71 | m_damping = 1.0f; |
---|
| 72 | m_limitSoftness = 0.5f; |
---|
| 73 | m_currentLimit = 0; |
---|
| 74 | m_currentLimitError = 0; |
---|
| 75 | m_enableMotor = false; |
---|
| 76 | } |
---|
| 77 | |
---|
| 78 | btRotationalLimitMotor(const btRotationalLimitMotor & limot) |
---|
| 79 | { |
---|
| 80 | m_targetVelocity = limot.m_targetVelocity; |
---|
| 81 | m_maxMotorForce = limot.m_maxMotorForce; |
---|
| 82 | m_limitSoftness = limot.m_limitSoftness; |
---|
| 83 | m_loLimit = limot.m_loLimit; |
---|
| 84 | m_hiLimit = limot.m_hiLimit; |
---|
| 85 | m_ERP = limot.m_ERP; |
---|
| 86 | m_bounce = limot.m_bounce; |
---|
| 87 | m_currentLimit = limot.m_currentLimit; |
---|
| 88 | m_currentLimitError = limot.m_currentLimitError; |
---|
| 89 | m_enableMotor = limot.m_enableMotor; |
---|
| 90 | } |
---|
| 91 | |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | //! Is limited |
---|
| 95 | bool isLimited() |
---|
| 96 | { |
---|
[2882] | 97 | if(m_loLimit > m_hiLimit) return false; |
---|
[1963] | 98 | return true; |
---|
| 99 | } |
---|
| 100 | |
---|
| 101 | //! Need apply correction |
---|
| 102 | bool needApplyTorques() |
---|
| 103 | { |
---|
| 104 | if(m_currentLimit == 0 && m_enableMotor == false) return false; |
---|
| 105 | return true; |
---|
| 106 | } |
---|
| 107 | |
---|
| 108 | //! calculates error |
---|
| 109 | /*! |
---|
| 110 | calculates m_currentLimit and m_currentLimitError. |
---|
| 111 | */ |
---|
| 112 | int testLimitValue(btScalar test_value); |
---|
| 113 | |
---|
| 114 | //! apply the correction impulses for two bodies |
---|
[2882] | 115 | btScalar solveAngularLimits(btScalar timeStep,btVector3& axis, btScalar jacDiagABInv,btRigidBody * body0, btSolverBody& bodyA,btRigidBody * body1,btSolverBody& bodyB); |
---|
[1963] | 116 | |
---|
| 117 | }; |
---|
| 118 | |
---|
| 119 | |
---|
| 120 | |
---|
| 121 | class btTranslationalLimitMotor |
---|
| 122 | { |
---|
| 123 | public: |
---|
| 124 | btVector3 m_lowerLimit;//!< the constraint lower limits |
---|
| 125 | btVector3 m_upperLimit;//!< the constraint upper limits |
---|
| 126 | btVector3 m_accumulatedImpulse; |
---|
| 127 | //! Linear_Limit_parameters |
---|
| 128 | //!@{ |
---|
| 129 | btScalar m_limitSoftness;//!< Softness for linear limit |
---|
| 130 | btScalar m_damping;//!< Damping for linear limit |
---|
| 131 | btScalar m_restitution;//! Bounce parameter for linear limit |
---|
| 132 | //!@} |
---|
[2882] | 133 | bool m_enableMotor[3]; |
---|
| 134 | btVector3 m_targetVelocity;//!< target motor velocity |
---|
| 135 | btVector3 m_maxMotorForce;//!< max force on motor |
---|
| 136 | btVector3 m_currentLimitError;//! How much is violated this limit |
---|
| 137 | int m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit |
---|
[1963] | 138 | |
---|
| 139 | btTranslationalLimitMotor() |
---|
| 140 | { |
---|
| 141 | m_lowerLimit.setValue(0.f,0.f,0.f); |
---|
| 142 | m_upperLimit.setValue(0.f,0.f,0.f); |
---|
| 143 | m_accumulatedImpulse.setValue(0.f,0.f,0.f); |
---|
| 144 | |
---|
| 145 | m_limitSoftness = 0.7f; |
---|
| 146 | m_damping = btScalar(1.0f); |
---|
| 147 | m_restitution = btScalar(0.5f); |
---|
[2882] | 148 | for(int i=0; i < 3; i++) |
---|
| 149 | { |
---|
| 150 | m_enableMotor[i] = false; |
---|
| 151 | m_targetVelocity[i] = btScalar(0.f); |
---|
| 152 | m_maxMotorForce[i] = btScalar(0.f); |
---|
| 153 | } |
---|
[1963] | 154 | } |
---|
| 155 | |
---|
| 156 | btTranslationalLimitMotor(const btTranslationalLimitMotor & other ) |
---|
| 157 | { |
---|
| 158 | m_lowerLimit = other.m_lowerLimit; |
---|
| 159 | m_upperLimit = other.m_upperLimit; |
---|
| 160 | m_accumulatedImpulse = other.m_accumulatedImpulse; |
---|
| 161 | |
---|
| 162 | m_limitSoftness = other.m_limitSoftness ; |
---|
| 163 | m_damping = other.m_damping; |
---|
| 164 | m_restitution = other.m_restitution; |
---|
[2882] | 165 | for(int i=0; i < 3; i++) |
---|
| 166 | { |
---|
| 167 | m_enableMotor[i] = other.m_enableMotor[i]; |
---|
| 168 | m_targetVelocity[i] = other.m_targetVelocity[i]; |
---|
| 169 | m_maxMotorForce[i] = other.m_maxMotorForce[i]; |
---|
| 170 | } |
---|
[1963] | 171 | } |
---|
| 172 | |
---|
| 173 | //! Test limit |
---|
| 174 | /*! |
---|
| 175 | - free means upper < lower, |
---|
| 176 | - locked means upper == lower |
---|
| 177 | - limited means upper > lower |
---|
| 178 | - limitIndex: first 3 are linear, next 3 are angular |
---|
| 179 | */ |
---|
| 180 | inline bool isLimited(int limitIndex) |
---|
| 181 | { |
---|
| 182 | return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]); |
---|
| 183 | } |
---|
[2882] | 184 | inline bool needApplyForce(int limitIndex) |
---|
| 185 | { |
---|
| 186 | if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false; |
---|
| 187 | return true; |
---|
| 188 | } |
---|
| 189 | int testLimitValue(int limitIndex, btScalar test_value); |
---|
[1963] | 190 | |
---|
| 191 | |
---|
| 192 | btScalar solveLinearAxis( |
---|
| 193 | btScalar timeStep, |
---|
| 194 | btScalar jacDiagABInv, |
---|
[2882] | 195 | btRigidBody& body1,btSolverBody& bodyA,const btVector3 &pointInA, |
---|
| 196 | btRigidBody& body2,btSolverBody& bodyB,const btVector3 &pointInB, |
---|
[1963] | 197 | int limit_index, |
---|
| 198 | const btVector3 & axis_normal_on_a, |
---|
| 199 | const btVector3 & anchorPos); |
---|
| 200 | |
---|
| 201 | |
---|
| 202 | }; |
---|
| 203 | |
---|
| 204 | /// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space |
---|
| 205 | /*! |
---|
| 206 | btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'. |
---|
| 207 | currently this limit supports rotational motors<br> |
---|
| 208 | <ul> |
---|
| 209 | <li> For Linear limits, use btGeneric6DofConstraint.setLinearUpperLimit, btGeneric6DofConstraint.setLinearLowerLimit. You can set the parameters with the btTranslationalLimitMotor structure accsesible through the btGeneric6DofConstraint.getTranslationalLimitMotor method. |
---|
| 210 | At this moment translational motors are not supported. May be in the future. </li> |
---|
| 211 | |
---|
| 212 | <li> For Angular limits, use the btRotationalLimitMotor structure for configuring the limit. |
---|
| 213 | This is accessible through btGeneric6DofConstraint.getLimitMotor method, |
---|
| 214 | This brings support for limit parameters and motors. </li> |
---|
| 215 | |
---|
| 216 | <li> Angulars limits have these possible ranges: |
---|
| 217 | <table border=1 > |
---|
| 218 | <tr |
---|
| 219 | |
---|
| 220 | <td><b>AXIS</b></td> |
---|
| 221 | <td><b>MIN ANGLE</b></td> |
---|
| 222 | <td><b>MAX ANGLE</b></td> |
---|
| 223 | <td>X</td> |
---|
| 224 | <td>-PI</td> |
---|
| 225 | <td>PI</td> |
---|
| 226 | <td>Y</td> |
---|
| 227 | <td>-PI/2</td> |
---|
| 228 | <td>PI/2</td> |
---|
| 229 | <td>Z</td> |
---|
| 230 | <td>-PI/2</td> |
---|
| 231 | <td>PI/2</td> |
---|
| 232 | </tr> |
---|
| 233 | </table> |
---|
| 234 | </li> |
---|
| 235 | </ul> |
---|
| 236 | |
---|
| 237 | */ |
---|
| 238 | class btGeneric6DofConstraint : public btTypedConstraint |
---|
| 239 | { |
---|
| 240 | protected: |
---|
| 241 | |
---|
| 242 | //! relative_frames |
---|
| 243 | //!@{ |
---|
| 244 | btTransform m_frameInA;//!< the constraint space w.r.t body A |
---|
| 245 | btTransform m_frameInB;//!< the constraint space w.r.t body B |
---|
| 246 | //!@} |
---|
| 247 | |
---|
| 248 | //! Jacobians |
---|
| 249 | //!@{ |
---|
| 250 | btJacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints |
---|
| 251 | btJacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints |
---|
| 252 | //!@} |
---|
| 253 | |
---|
| 254 | //! Linear_Limit_parameters |
---|
| 255 | //!@{ |
---|
| 256 | btTranslationalLimitMotor m_linearLimits; |
---|
| 257 | //!@} |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | //! hinge_parameters |
---|
| 261 | //!@{ |
---|
| 262 | btRotationalLimitMotor m_angularLimits[3]; |
---|
| 263 | //!@} |
---|
| 264 | |
---|
| 265 | |
---|
| 266 | protected: |
---|
| 267 | //! temporal variables |
---|
| 268 | //!@{ |
---|
| 269 | btScalar m_timeStep; |
---|
| 270 | btTransform m_calculatedTransformA; |
---|
| 271 | btTransform m_calculatedTransformB; |
---|
| 272 | btVector3 m_calculatedAxisAngleDiff; |
---|
| 273 | btVector3 m_calculatedAxis[3]; |
---|
[2882] | 274 | btVector3 m_calculatedLinearDiff; |
---|
[1963] | 275 | |
---|
| 276 | btVector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes |
---|
| 277 | |
---|
| 278 | bool m_useLinearReferenceFrameA; |
---|
| 279 | |
---|
| 280 | //!@} |
---|
| 281 | |
---|
| 282 | btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other) |
---|
| 283 | { |
---|
| 284 | btAssert(0); |
---|
| 285 | (void) other; |
---|
| 286 | return *this; |
---|
| 287 | } |
---|
| 288 | |
---|
| 289 | |
---|
[2882] | 290 | int setAngularLimits(btConstraintInfo2 *info, int row_offset); |
---|
[1963] | 291 | |
---|
[2882] | 292 | int setLinearLimits(btConstraintInfo2 *info); |
---|
| 293 | |
---|
[1963] | 294 | void buildLinearJacobian( |
---|
| 295 | btJacobianEntry & jacLinear,const btVector3 & normalWorld, |
---|
| 296 | const btVector3 & pivotAInW,const btVector3 & pivotBInW); |
---|
| 297 | |
---|
| 298 | void buildAngularJacobian(btJacobianEntry & jacAngular,const btVector3 & jointAxisW); |
---|
| 299 | |
---|
[2882] | 300 | // tests linear limits |
---|
| 301 | void calculateLinearInfo(); |
---|
[1963] | 302 | |
---|
| 303 | //! calcs the euler angles between the two bodies. |
---|
| 304 | void calculateAngleInfo(); |
---|
| 305 | |
---|
| 306 | |
---|
| 307 | |
---|
| 308 | public: |
---|
[2882] | 309 | |
---|
| 310 | ///for backwards compatibility during the transition to 'getInfo/getInfo2' |
---|
| 311 | bool m_useSolveConstraintObsolete; |
---|
| 312 | |
---|
[1963] | 313 | btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA); |
---|
| 314 | |
---|
| 315 | btGeneric6DofConstraint(); |
---|
| 316 | |
---|
| 317 | //! Calcs global transform of the offsets |
---|
| 318 | /*! |
---|
| 319 | Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies. |
---|
| 320 | \sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo |
---|
| 321 | */ |
---|
| 322 | void calculateTransforms(); |
---|
| 323 | |
---|
| 324 | //! Gets the global transform of the offset for body A |
---|
| 325 | /*! |
---|
| 326 | \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo. |
---|
| 327 | */ |
---|
| 328 | const btTransform & getCalculatedTransformA() const |
---|
| 329 | { |
---|
| 330 | return m_calculatedTransformA; |
---|
| 331 | } |
---|
| 332 | |
---|
| 333 | //! Gets the global transform of the offset for body B |
---|
| 334 | /*! |
---|
| 335 | \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo. |
---|
| 336 | */ |
---|
| 337 | const btTransform & getCalculatedTransformB() const |
---|
| 338 | { |
---|
| 339 | return m_calculatedTransformB; |
---|
| 340 | } |
---|
| 341 | |
---|
| 342 | const btTransform & getFrameOffsetA() const |
---|
| 343 | { |
---|
| 344 | return m_frameInA; |
---|
| 345 | } |
---|
| 346 | |
---|
| 347 | const btTransform & getFrameOffsetB() const |
---|
| 348 | { |
---|
| 349 | return m_frameInB; |
---|
| 350 | } |
---|
| 351 | |
---|
| 352 | |
---|
| 353 | btTransform & getFrameOffsetA() |
---|
| 354 | { |
---|
| 355 | return m_frameInA; |
---|
| 356 | } |
---|
| 357 | |
---|
| 358 | btTransform & getFrameOffsetB() |
---|
| 359 | { |
---|
| 360 | return m_frameInB; |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | |
---|
| 364 | //! performs Jacobian calculation, and also calculates angle differences and axis |
---|
| 365 | virtual void buildJacobian(); |
---|
| 366 | |
---|
[2882] | 367 | virtual void getInfo1 (btConstraintInfo1* info); |
---|
[1963] | 368 | |
---|
[2882] | 369 | virtual void getInfo2 (btConstraintInfo2* info); |
---|
| 370 | |
---|
| 371 | virtual void solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep); |
---|
| 372 | |
---|
[1963] | 373 | void updateRHS(btScalar timeStep); |
---|
| 374 | |
---|
| 375 | //! Get the rotation axis in global coordinates |
---|
| 376 | /*! |
---|
| 377 | \pre btGeneric6DofConstraint.buildJacobian must be called previously. |
---|
| 378 | */ |
---|
| 379 | btVector3 getAxis(int axis_index) const; |
---|
| 380 | |
---|
| 381 | //! Get the relative Euler angle |
---|
| 382 | /*! |
---|
| 383 | \pre btGeneric6DofConstraint.buildJacobian must be called previously. |
---|
| 384 | */ |
---|
| 385 | btScalar getAngle(int axis_index) const; |
---|
| 386 | |
---|
| 387 | //! Test angular limit. |
---|
| 388 | /*! |
---|
| 389 | Calculates angular correction and returns true if limit needs to be corrected. |
---|
| 390 | \pre btGeneric6DofConstraint.buildJacobian must be called previously. |
---|
| 391 | */ |
---|
| 392 | bool testAngularLimitMotor(int axis_index); |
---|
| 393 | |
---|
| 394 | void setLinearLowerLimit(const btVector3& linearLower) |
---|
| 395 | { |
---|
| 396 | m_linearLimits.m_lowerLimit = linearLower; |
---|
| 397 | } |
---|
| 398 | |
---|
| 399 | void setLinearUpperLimit(const btVector3& linearUpper) |
---|
| 400 | { |
---|
| 401 | m_linearLimits.m_upperLimit = linearUpper; |
---|
| 402 | } |
---|
| 403 | |
---|
| 404 | void setAngularLowerLimit(const btVector3& angularLower) |
---|
| 405 | { |
---|
| 406 | m_angularLimits[0].m_loLimit = angularLower.getX(); |
---|
| 407 | m_angularLimits[1].m_loLimit = angularLower.getY(); |
---|
| 408 | m_angularLimits[2].m_loLimit = angularLower.getZ(); |
---|
| 409 | } |
---|
| 410 | |
---|
| 411 | void setAngularUpperLimit(const btVector3& angularUpper) |
---|
| 412 | { |
---|
| 413 | m_angularLimits[0].m_hiLimit = angularUpper.getX(); |
---|
| 414 | m_angularLimits[1].m_hiLimit = angularUpper.getY(); |
---|
| 415 | m_angularLimits[2].m_hiLimit = angularUpper.getZ(); |
---|
| 416 | } |
---|
| 417 | |
---|
| 418 | //! Retrieves the angular limit informacion |
---|
| 419 | btRotationalLimitMotor * getRotationalLimitMotor(int index) |
---|
| 420 | { |
---|
| 421 | return &m_angularLimits[index]; |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | //! Retrieves the limit informacion |
---|
| 425 | btTranslationalLimitMotor * getTranslationalLimitMotor() |
---|
| 426 | { |
---|
| 427 | return &m_linearLimits; |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | //first 3 are linear, next 3 are angular |
---|
| 431 | void setLimit(int axis, btScalar lo, btScalar hi) |
---|
| 432 | { |
---|
| 433 | if(axis<3) |
---|
| 434 | { |
---|
| 435 | m_linearLimits.m_lowerLimit[axis] = lo; |
---|
| 436 | m_linearLimits.m_upperLimit[axis] = hi; |
---|
| 437 | } |
---|
| 438 | else |
---|
| 439 | { |
---|
| 440 | m_angularLimits[axis-3].m_loLimit = lo; |
---|
| 441 | m_angularLimits[axis-3].m_hiLimit = hi; |
---|
| 442 | } |
---|
| 443 | } |
---|
| 444 | |
---|
| 445 | //! Test limit |
---|
| 446 | /*! |
---|
| 447 | - free means upper < lower, |
---|
| 448 | - locked means upper == lower |
---|
| 449 | - limited means upper > lower |
---|
| 450 | - limitIndex: first 3 are linear, next 3 are angular |
---|
| 451 | */ |
---|
| 452 | bool isLimited(int limitIndex) |
---|
| 453 | { |
---|
| 454 | if(limitIndex<3) |
---|
| 455 | { |
---|
| 456 | return m_linearLimits.isLimited(limitIndex); |
---|
| 457 | |
---|
| 458 | } |
---|
| 459 | return m_angularLimits[limitIndex-3].isLimited(); |
---|
| 460 | } |
---|
| 461 | |
---|
| 462 | const btRigidBody& getRigidBodyA() const |
---|
| 463 | { |
---|
| 464 | return m_rbA; |
---|
| 465 | } |
---|
| 466 | const btRigidBody& getRigidBodyB() const |
---|
| 467 | { |
---|
| 468 | return m_rbB; |
---|
| 469 | } |
---|
| 470 | |
---|
| 471 | virtual void calcAnchorPos(void); // overridable |
---|
| 472 | |
---|
[2882] | 473 | int get_limit_motor_info2( btRotationalLimitMotor * limot, |
---|
| 474 | btRigidBody * body0, btRigidBody * body1, |
---|
| 475 | btConstraintInfo2 *info, int row, btVector3& ax1, int rotational); |
---|
| 476 | |
---|
| 477 | |
---|
[1963] | 478 | }; |
---|
| 479 | |
---|
| 480 | #endif //GENERIC_6DOF_CONSTRAINT_H |
---|