1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | /// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev |
---|
17 | /// Added support for generic constraint solver through getInfo1/getInfo2 methods |
---|
18 | |
---|
19 | /* |
---|
20 | 2007-09-09 |
---|
21 | btGeneric6DofConstraint Refactored by Francisco Le?n |
---|
22 | email: projectileman@yahoo.com |
---|
23 | http://gimpact.sf.net |
---|
24 | */ |
---|
25 | |
---|
26 | |
---|
27 | #ifndef GENERIC_6DOF_CONSTRAINT_H |
---|
28 | #define GENERIC_6DOF_CONSTRAINT_H |
---|
29 | |
---|
30 | #include "LinearMath/btVector3.h" |
---|
31 | #include "btJacobianEntry.h" |
---|
32 | #include "btTypedConstraint.h" |
---|
33 | |
---|
34 | class btRigidBody; |
---|
35 | |
---|
36 | |
---|
37 | |
---|
38 | |
---|
39 | //! Rotation Limit structure for generic joints |
---|
40 | class btRotationalLimitMotor |
---|
41 | { |
---|
42 | public: |
---|
43 | //! limit_parameters |
---|
44 | //!@{ |
---|
45 | btScalar m_loLimit;//!< joint limit |
---|
46 | btScalar m_hiLimit;//!< joint limit |
---|
47 | btScalar m_targetVelocity;//!< target motor velocity |
---|
48 | btScalar m_maxMotorForce;//!< max force on motor |
---|
49 | btScalar m_maxLimitForce;//!< max force on limit |
---|
50 | btScalar m_damping;//!< Damping. |
---|
51 | btScalar m_limitSoftness;//! Relaxation factor |
---|
52 | btScalar m_normalCFM;//!< Constraint force mixing factor |
---|
53 | btScalar m_stopERP;//!< Error tolerance factor when joint is at limit |
---|
54 | btScalar m_stopCFM;//!< Constraint force mixing factor when joint is at limit |
---|
55 | btScalar m_bounce;//!< restitution factor |
---|
56 | bool m_enableMotor; |
---|
57 | |
---|
58 | //!@} |
---|
59 | |
---|
60 | //! temp_variables |
---|
61 | //!@{ |
---|
62 | btScalar m_currentLimitError;//! How much is violated this limit |
---|
63 | btScalar m_currentPosition; //! current value of angle |
---|
64 | int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit |
---|
65 | btScalar m_accumulatedImpulse; |
---|
66 | //!@} |
---|
67 | |
---|
68 | btRotationalLimitMotor() |
---|
69 | { |
---|
70 | m_accumulatedImpulse = 0.f; |
---|
71 | m_targetVelocity = 0; |
---|
72 | m_maxMotorForce = 0.1f; |
---|
73 | m_maxLimitForce = 300.0f; |
---|
74 | m_loLimit = 1.0f; |
---|
75 | m_hiLimit = -1.0f; |
---|
76 | m_normalCFM = 0.f; |
---|
77 | m_stopERP = 0.2f; |
---|
78 | m_stopCFM = 0.f; |
---|
79 | m_bounce = 0.0f; |
---|
80 | m_damping = 1.0f; |
---|
81 | m_limitSoftness = 0.5f; |
---|
82 | m_currentLimit = 0; |
---|
83 | m_currentLimitError = 0; |
---|
84 | m_enableMotor = false; |
---|
85 | } |
---|
86 | |
---|
87 | btRotationalLimitMotor(const btRotationalLimitMotor & limot) |
---|
88 | { |
---|
89 | m_targetVelocity = limot.m_targetVelocity; |
---|
90 | m_maxMotorForce = limot.m_maxMotorForce; |
---|
91 | m_limitSoftness = limot.m_limitSoftness; |
---|
92 | m_loLimit = limot.m_loLimit; |
---|
93 | m_hiLimit = limot.m_hiLimit; |
---|
94 | m_normalCFM = limot.m_normalCFM; |
---|
95 | m_stopERP = limot.m_stopERP; |
---|
96 | m_stopCFM = limot.m_stopCFM; |
---|
97 | m_bounce = limot.m_bounce; |
---|
98 | m_currentLimit = limot.m_currentLimit; |
---|
99 | m_currentLimitError = limot.m_currentLimitError; |
---|
100 | m_enableMotor = limot.m_enableMotor; |
---|
101 | } |
---|
102 | |
---|
103 | |
---|
104 | |
---|
105 | //! Is limited |
---|
106 | bool isLimited() |
---|
107 | { |
---|
108 | if(m_loLimit > m_hiLimit) return false; |
---|
109 | return true; |
---|
110 | } |
---|
111 | |
---|
112 | //! Need apply correction |
---|
113 | bool needApplyTorques() |
---|
114 | { |
---|
115 | if(m_currentLimit == 0 && m_enableMotor == false) return false; |
---|
116 | return true; |
---|
117 | } |
---|
118 | |
---|
119 | //! calculates error |
---|
120 | /*! |
---|
121 | calculates m_currentLimit and m_currentLimitError. |
---|
122 | */ |
---|
123 | int testLimitValue(btScalar test_value); |
---|
124 | |
---|
125 | //! apply the correction impulses for two bodies |
---|
126 | btScalar solveAngularLimits(btScalar timeStep,btVector3& axis, btScalar jacDiagABInv,btRigidBody * body0, btRigidBody * body1); |
---|
127 | |
---|
128 | }; |
---|
129 | |
---|
130 | |
---|
131 | |
---|
132 | class btTranslationalLimitMotor |
---|
133 | { |
---|
134 | public: |
---|
135 | btVector3 m_lowerLimit;//!< the constraint lower limits |
---|
136 | btVector3 m_upperLimit;//!< the constraint upper limits |
---|
137 | btVector3 m_accumulatedImpulse; |
---|
138 | //! Linear_Limit_parameters |
---|
139 | //!@{ |
---|
140 | btScalar m_limitSoftness;//!< Softness for linear limit |
---|
141 | btScalar m_damping;//!< Damping for linear limit |
---|
142 | btScalar m_restitution;//! Bounce parameter for linear limit |
---|
143 | btVector3 m_normalCFM;//!< Constraint force mixing factor |
---|
144 | btVector3 m_stopERP;//!< Error tolerance factor when joint is at limit |
---|
145 | btVector3 m_stopCFM;//!< Constraint force mixing factor when joint is at limit |
---|
146 | //!@} |
---|
147 | bool m_enableMotor[3]; |
---|
148 | btVector3 m_targetVelocity;//!< target motor velocity |
---|
149 | btVector3 m_maxMotorForce;//!< max force on motor |
---|
150 | btVector3 m_currentLimitError;//! How much is violated this limit |
---|
151 | btVector3 m_currentLinearDiff;//! Current relative offset of constraint frames |
---|
152 | int m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit |
---|
153 | |
---|
154 | btTranslationalLimitMotor() |
---|
155 | { |
---|
156 | m_lowerLimit.setValue(0.f,0.f,0.f); |
---|
157 | m_upperLimit.setValue(0.f,0.f,0.f); |
---|
158 | m_accumulatedImpulse.setValue(0.f,0.f,0.f); |
---|
159 | m_normalCFM.setValue(0.f, 0.f, 0.f); |
---|
160 | m_stopERP.setValue(0.2f, 0.2f, 0.2f); |
---|
161 | m_stopCFM.setValue(0.f, 0.f, 0.f); |
---|
162 | |
---|
163 | m_limitSoftness = 0.7f; |
---|
164 | m_damping = btScalar(1.0f); |
---|
165 | m_restitution = btScalar(0.5f); |
---|
166 | for(int i=0; i < 3; i++) |
---|
167 | { |
---|
168 | m_enableMotor[i] = false; |
---|
169 | m_targetVelocity[i] = btScalar(0.f); |
---|
170 | m_maxMotorForce[i] = btScalar(0.f); |
---|
171 | } |
---|
172 | } |
---|
173 | |
---|
174 | btTranslationalLimitMotor(const btTranslationalLimitMotor & other ) |
---|
175 | { |
---|
176 | m_lowerLimit = other.m_lowerLimit; |
---|
177 | m_upperLimit = other.m_upperLimit; |
---|
178 | m_accumulatedImpulse = other.m_accumulatedImpulse; |
---|
179 | |
---|
180 | m_limitSoftness = other.m_limitSoftness ; |
---|
181 | m_damping = other.m_damping; |
---|
182 | m_restitution = other.m_restitution; |
---|
183 | m_normalCFM = other.m_normalCFM; |
---|
184 | m_stopERP = other.m_stopERP; |
---|
185 | m_stopCFM = other.m_stopCFM; |
---|
186 | |
---|
187 | for(int i=0; i < 3; i++) |
---|
188 | { |
---|
189 | m_enableMotor[i] = other.m_enableMotor[i]; |
---|
190 | m_targetVelocity[i] = other.m_targetVelocity[i]; |
---|
191 | m_maxMotorForce[i] = other.m_maxMotorForce[i]; |
---|
192 | } |
---|
193 | } |
---|
194 | |
---|
195 | //! Test limit |
---|
196 | /*! |
---|
197 | - free means upper < lower, |
---|
198 | - locked means upper == lower |
---|
199 | - limited means upper > lower |
---|
200 | - limitIndex: first 3 are linear, next 3 are angular |
---|
201 | */ |
---|
202 | inline bool isLimited(int limitIndex) |
---|
203 | { |
---|
204 | return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]); |
---|
205 | } |
---|
206 | inline bool needApplyForce(int limitIndex) |
---|
207 | { |
---|
208 | if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false; |
---|
209 | return true; |
---|
210 | } |
---|
211 | int testLimitValue(int limitIndex, btScalar test_value); |
---|
212 | |
---|
213 | |
---|
214 | btScalar solveLinearAxis( |
---|
215 | btScalar timeStep, |
---|
216 | btScalar jacDiagABInv, |
---|
217 | btRigidBody& body1,const btVector3 &pointInA, |
---|
218 | btRigidBody& body2,const btVector3 &pointInB, |
---|
219 | int limit_index, |
---|
220 | const btVector3 & axis_normal_on_a, |
---|
221 | const btVector3 & anchorPos); |
---|
222 | |
---|
223 | |
---|
224 | }; |
---|
225 | |
---|
226 | enum bt6DofFlags |
---|
227 | { |
---|
228 | BT_6DOF_FLAGS_CFM_NORM = 1, |
---|
229 | BT_6DOF_FLAGS_CFM_STOP = 2, |
---|
230 | BT_6DOF_FLAGS_ERP_STOP = 4 |
---|
231 | }; |
---|
232 | #define BT_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis |
---|
233 | |
---|
234 | |
---|
235 | /// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space |
---|
236 | /*! |
---|
237 | btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'. |
---|
238 | currently this limit supports rotational motors<br> |
---|
239 | <ul> |
---|
240 | <li> For Linear limits, use btGeneric6DofConstraint.setLinearUpperLimit, btGeneric6DofConstraint.setLinearLowerLimit. You can set the parameters with the btTranslationalLimitMotor structure accsesible through the btGeneric6DofConstraint.getTranslationalLimitMotor method. |
---|
241 | At this moment translational motors are not supported. May be in the future. </li> |
---|
242 | |
---|
243 | <li> For Angular limits, use the btRotationalLimitMotor structure for configuring the limit. |
---|
244 | This is accessible through btGeneric6DofConstraint.getLimitMotor method, |
---|
245 | This brings support for limit parameters and motors. </li> |
---|
246 | |
---|
247 | <li> Angulars limits have these possible ranges: |
---|
248 | <table border=1 > |
---|
249 | <tr> |
---|
250 | <td><b>AXIS</b></td> |
---|
251 | <td><b>MIN ANGLE</b></td> |
---|
252 | <td><b>MAX ANGLE</b></td> |
---|
253 | </tr><tr> |
---|
254 | <td>X</td> |
---|
255 | <td>-PI</td> |
---|
256 | <td>PI</td> |
---|
257 | </tr><tr> |
---|
258 | <td>Y</td> |
---|
259 | <td>-PI/2</td> |
---|
260 | <td>PI/2</td> |
---|
261 | </tr><tr> |
---|
262 | <td>Z</td> |
---|
263 | <td>-PI</td> |
---|
264 | <td>PI</td> |
---|
265 | </tr> |
---|
266 | </table> |
---|
267 | </li> |
---|
268 | </ul> |
---|
269 | |
---|
270 | */ |
---|
271 | class btGeneric6DofConstraint : public btTypedConstraint |
---|
272 | { |
---|
273 | protected: |
---|
274 | |
---|
275 | //! relative_frames |
---|
276 | //!@{ |
---|
277 | btTransform m_frameInA;//!< the constraint space w.r.t body A |
---|
278 | btTransform m_frameInB;//!< the constraint space w.r.t body B |
---|
279 | //!@} |
---|
280 | |
---|
281 | //! Jacobians |
---|
282 | //!@{ |
---|
283 | btJacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints |
---|
284 | btJacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints |
---|
285 | //!@} |
---|
286 | |
---|
287 | //! Linear_Limit_parameters |
---|
288 | //!@{ |
---|
289 | btTranslationalLimitMotor m_linearLimits; |
---|
290 | //!@} |
---|
291 | |
---|
292 | |
---|
293 | //! hinge_parameters |
---|
294 | //!@{ |
---|
295 | btRotationalLimitMotor m_angularLimits[3]; |
---|
296 | //!@} |
---|
297 | |
---|
298 | |
---|
299 | protected: |
---|
300 | //! temporal variables |
---|
301 | //!@{ |
---|
302 | btScalar m_timeStep; |
---|
303 | btTransform m_calculatedTransformA; |
---|
304 | btTransform m_calculatedTransformB; |
---|
305 | btVector3 m_calculatedAxisAngleDiff; |
---|
306 | btVector3 m_calculatedAxis[3]; |
---|
307 | btVector3 m_calculatedLinearDiff; |
---|
308 | btScalar m_factA; |
---|
309 | btScalar m_factB; |
---|
310 | bool m_hasStaticBody; |
---|
311 | |
---|
312 | btVector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes |
---|
313 | |
---|
314 | bool m_useLinearReferenceFrameA; |
---|
315 | bool m_useOffsetForConstraintFrame; |
---|
316 | |
---|
317 | int m_flags; |
---|
318 | |
---|
319 | //!@} |
---|
320 | |
---|
321 | btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other) |
---|
322 | { |
---|
323 | btAssert(0); |
---|
324 | (void) other; |
---|
325 | return *this; |
---|
326 | } |
---|
327 | |
---|
328 | |
---|
329 | int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); |
---|
330 | |
---|
331 | int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); |
---|
332 | |
---|
333 | void buildLinearJacobian( |
---|
334 | btJacobianEntry & jacLinear,const btVector3 & normalWorld, |
---|
335 | const btVector3 & pivotAInW,const btVector3 & pivotBInW); |
---|
336 | |
---|
337 | void buildAngularJacobian(btJacobianEntry & jacAngular,const btVector3 & jointAxisW); |
---|
338 | |
---|
339 | // tests linear limits |
---|
340 | void calculateLinearInfo(); |
---|
341 | |
---|
342 | //! calcs the euler angles between the two bodies. |
---|
343 | void calculateAngleInfo(); |
---|
344 | |
---|
345 | |
---|
346 | |
---|
347 | public: |
---|
348 | |
---|
349 | ///for backwards compatibility during the transition to 'getInfo/getInfo2' |
---|
350 | bool m_useSolveConstraintObsolete; |
---|
351 | |
---|
352 | btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA); |
---|
353 | btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB); |
---|
354 | |
---|
355 | //! Calcs global transform of the offsets |
---|
356 | /*! |
---|
357 | Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies. |
---|
358 | \sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo |
---|
359 | */ |
---|
360 | void calculateTransforms(const btTransform& transA,const btTransform& transB); |
---|
361 | |
---|
362 | void calculateTransforms(); |
---|
363 | |
---|
364 | //! Gets the global transform of the offset for body A |
---|
365 | /*! |
---|
366 | \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo. |
---|
367 | */ |
---|
368 | const btTransform & getCalculatedTransformA() const |
---|
369 | { |
---|
370 | return m_calculatedTransformA; |
---|
371 | } |
---|
372 | |
---|
373 | //! Gets the global transform of the offset for body B |
---|
374 | /*! |
---|
375 | \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo. |
---|
376 | */ |
---|
377 | const btTransform & getCalculatedTransformB() const |
---|
378 | { |
---|
379 | return m_calculatedTransformB; |
---|
380 | } |
---|
381 | |
---|
382 | const btTransform & getFrameOffsetA() const |
---|
383 | { |
---|
384 | return m_frameInA; |
---|
385 | } |
---|
386 | |
---|
387 | const btTransform & getFrameOffsetB() const |
---|
388 | { |
---|
389 | return m_frameInB; |
---|
390 | } |
---|
391 | |
---|
392 | |
---|
393 | btTransform & getFrameOffsetA() |
---|
394 | { |
---|
395 | return m_frameInA; |
---|
396 | } |
---|
397 | |
---|
398 | btTransform & getFrameOffsetB() |
---|
399 | { |
---|
400 | return m_frameInB; |
---|
401 | } |
---|
402 | |
---|
403 | |
---|
404 | //! performs Jacobian calculation, and also calculates angle differences and axis |
---|
405 | virtual void buildJacobian(); |
---|
406 | |
---|
407 | virtual void getInfo1 (btConstraintInfo1* info); |
---|
408 | |
---|
409 | void getInfo1NonVirtual (btConstraintInfo1* info); |
---|
410 | |
---|
411 | virtual void getInfo2 (btConstraintInfo2* info); |
---|
412 | |
---|
413 | void getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); |
---|
414 | |
---|
415 | |
---|
416 | void updateRHS(btScalar timeStep); |
---|
417 | |
---|
418 | //! Get the rotation axis in global coordinates |
---|
419 | /*! |
---|
420 | \pre btGeneric6DofConstraint.buildJacobian must be called previously. |
---|
421 | */ |
---|
422 | btVector3 getAxis(int axis_index) const; |
---|
423 | |
---|
424 | //! Get the relative Euler angle |
---|
425 | /*! |
---|
426 | \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. |
---|
427 | */ |
---|
428 | btScalar getAngle(int axis_index) const; |
---|
429 | |
---|
430 | //! Get the relative position of the constraint pivot |
---|
431 | /*! |
---|
432 | \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. |
---|
433 | */ |
---|
434 | btScalar getRelativePivotPosition(int axis_index) const; |
---|
435 | |
---|
436 | |
---|
437 | //! Test angular limit. |
---|
438 | /*! |
---|
439 | Calculates angular correction and returns true if limit needs to be corrected. |
---|
440 | \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. |
---|
441 | */ |
---|
442 | bool testAngularLimitMotor(int axis_index); |
---|
443 | |
---|
444 | void setLinearLowerLimit(const btVector3& linearLower) |
---|
445 | { |
---|
446 | m_linearLimits.m_lowerLimit = linearLower; |
---|
447 | } |
---|
448 | |
---|
449 | void setLinearUpperLimit(const btVector3& linearUpper) |
---|
450 | { |
---|
451 | m_linearLimits.m_upperLimit = linearUpper; |
---|
452 | } |
---|
453 | |
---|
454 | void setAngularLowerLimit(const btVector3& angularLower) |
---|
455 | { |
---|
456 | for(int i = 0; i < 3; i++) |
---|
457 | m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]); |
---|
458 | } |
---|
459 | |
---|
460 | void setAngularUpperLimit(const btVector3& angularUpper) |
---|
461 | { |
---|
462 | for(int i = 0; i < 3; i++) |
---|
463 | m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]); |
---|
464 | } |
---|
465 | |
---|
466 | //! Retrieves the angular limit informacion |
---|
467 | btRotationalLimitMotor * getRotationalLimitMotor(int index) |
---|
468 | { |
---|
469 | return &m_angularLimits[index]; |
---|
470 | } |
---|
471 | |
---|
472 | //! Retrieves the limit informacion |
---|
473 | btTranslationalLimitMotor * getTranslationalLimitMotor() |
---|
474 | { |
---|
475 | return &m_linearLimits; |
---|
476 | } |
---|
477 | |
---|
478 | //first 3 are linear, next 3 are angular |
---|
479 | void setLimit(int axis, btScalar lo, btScalar hi) |
---|
480 | { |
---|
481 | if(axis<3) |
---|
482 | { |
---|
483 | m_linearLimits.m_lowerLimit[axis] = lo; |
---|
484 | m_linearLimits.m_upperLimit[axis] = hi; |
---|
485 | } |
---|
486 | else |
---|
487 | { |
---|
488 | lo = btNormalizeAngle(lo); |
---|
489 | hi = btNormalizeAngle(hi); |
---|
490 | m_angularLimits[axis-3].m_loLimit = lo; |
---|
491 | m_angularLimits[axis-3].m_hiLimit = hi; |
---|
492 | } |
---|
493 | } |
---|
494 | |
---|
495 | //! Test limit |
---|
496 | /*! |
---|
497 | - free means upper < lower, |
---|
498 | - locked means upper == lower |
---|
499 | - limited means upper > lower |
---|
500 | - limitIndex: first 3 are linear, next 3 are angular |
---|
501 | */ |
---|
502 | bool isLimited(int limitIndex) |
---|
503 | { |
---|
504 | if(limitIndex<3) |
---|
505 | { |
---|
506 | return m_linearLimits.isLimited(limitIndex); |
---|
507 | |
---|
508 | } |
---|
509 | return m_angularLimits[limitIndex-3].isLimited(); |
---|
510 | } |
---|
511 | |
---|
512 | virtual void calcAnchorPos(void); // overridable |
---|
513 | |
---|
514 | int get_limit_motor_info2( btRotationalLimitMotor * limot, |
---|
515 | const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB, |
---|
516 | btConstraintInfo2 *info, int row, btVector3& ax1, int rotational, int rotAllowed = false); |
---|
517 | |
---|
518 | // access for UseFrameOffset |
---|
519 | bool getUseFrameOffset() { return m_useOffsetForConstraintFrame; } |
---|
520 | void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; } |
---|
521 | |
---|
522 | ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). |
---|
523 | ///If no axis is provided, it uses the default axis for this constraint. |
---|
524 | virtual void setParam(int num, btScalar value, int axis = -1); |
---|
525 | ///return the local value of parameter |
---|
526 | virtual btScalar getParam(int num, int axis = -1) const; |
---|
527 | |
---|
528 | virtual int calculateSerializeBufferSize() const; |
---|
529 | |
---|
530 | ///fills the dataBuffer and returns the struct name (and 0 on failure) |
---|
531 | virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const; |
---|
532 | |
---|
533 | |
---|
534 | }; |
---|
535 | |
---|
536 | ///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 |
---|
537 | struct btGeneric6DofConstraintData |
---|
538 | { |
---|
539 | btTypedConstraintData m_typeConstraintData; |
---|
540 | btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis. |
---|
541 | btTransformFloatData m_rbBFrame; |
---|
542 | |
---|
543 | btVector3FloatData m_linearUpperLimit; |
---|
544 | btVector3FloatData m_linearLowerLimit; |
---|
545 | |
---|
546 | btVector3FloatData m_angularUpperLimit; |
---|
547 | btVector3FloatData m_angularLowerLimit; |
---|
548 | |
---|
549 | int m_useLinearReferenceFrameA; |
---|
550 | int m_useOffsetForConstraintFrame; |
---|
551 | }; |
---|
552 | |
---|
553 | SIMD_FORCE_INLINE int btGeneric6DofConstraint::calculateSerializeBufferSize() const |
---|
554 | { |
---|
555 | return sizeof(btGeneric6DofConstraintData); |
---|
556 | } |
---|
557 | |
---|
558 | ///fills the dataBuffer and returns the struct name (and 0 on failure) |
---|
559 | SIMD_FORCE_INLINE const char* btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const |
---|
560 | { |
---|
561 | |
---|
562 | btGeneric6DofConstraintData* dof = (btGeneric6DofConstraintData*)dataBuffer; |
---|
563 | btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer); |
---|
564 | |
---|
565 | m_frameInA.serializeFloat(dof->m_rbAFrame); |
---|
566 | m_frameInB.serializeFloat(dof->m_rbBFrame); |
---|
567 | |
---|
568 | |
---|
569 | int i; |
---|
570 | for (i=0;i<3;i++) |
---|
571 | { |
---|
572 | dof->m_angularLowerLimit.m_floats[i] = float(m_angularLimits[i].m_loLimit); |
---|
573 | dof->m_angularUpperLimit.m_floats[i] = float(m_angularLimits[i].m_hiLimit); |
---|
574 | dof->m_linearLowerLimit.m_floats[i] = float(m_linearLimits.m_lowerLimit[i]); |
---|
575 | dof->m_linearUpperLimit.m_floats[i] = float(m_linearLimits.m_upperLimit[i]); |
---|
576 | } |
---|
577 | |
---|
578 | dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA? 1 : 0; |
---|
579 | dof->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame ? 1 : 0; |
---|
580 | |
---|
581 | return "btGeneric6DofConstraintData"; |
---|
582 | } |
---|
583 | |
---|
584 | |
---|
585 | |
---|
586 | |
---|
587 | |
---|
588 | #endif //GENERIC_6DOF_CONSTRAINT_H |
---|