1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | #include "btRigidBody.h" |
---|
17 | #include "BulletCollision/CollisionShapes/btConvexShape.h" |
---|
18 | #include "LinearMath/btMinMax.h" |
---|
19 | #include "LinearMath/btTransformUtil.h" |
---|
20 | #include "LinearMath/btMotionState.h" |
---|
21 | #include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" |
---|
22 | #include "LinearMath/btSerializer.h" |
---|
23 | |
---|
24 | //'temporarily' global variables |
---|
25 | btScalar gDeactivationTime = btScalar(2.); |
---|
26 | bool gDisableDeactivation = false; |
---|
27 | static int uniqueId = 0; |
---|
28 | |
---|
29 | |
---|
30 | btRigidBody::btRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo) |
---|
31 | { |
---|
32 | setupRigidBody(constructionInfo); |
---|
33 | } |
---|
34 | |
---|
35 | btRigidBody::btRigidBody(btScalar mass, btMotionState *motionState, btCollisionShape *collisionShape, const btVector3 &localInertia) |
---|
36 | { |
---|
37 | btRigidBodyConstructionInfo cinfo(mass,motionState,collisionShape,localInertia); |
---|
38 | setupRigidBody(cinfo); |
---|
39 | } |
---|
40 | |
---|
41 | void btRigidBody::setupRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo) |
---|
42 | { |
---|
43 | |
---|
44 | m_internalType=CO_RIGID_BODY; |
---|
45 | |
---|
46 | m_linearVelocity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); |
---|
47 | m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
48 | m_angularFactor.setValue(1,1,1); |
---|
49 | m_linearFactor.setValue(1,1,1); |
---|
50 | m_gravity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); |
---|
51 | m_gravity_acceleration.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); |
---|
52 | m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); |
---|
53 | m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)), |
---|
54 | setDamping(constructionInfo.m_linearDamping, constructionInfo.m_angularDamping); |
---|
55 | |
---|
56 | m_linearSleepingThreshold = constructionInfo.m_linearSleepingThreshold; |
---|
57 | m_angularSleepingThreshold = constructionInfo.m_angularSleepingThreshold; |
---|
58 | m_optionalMotionState = constructionInfo.m_motionState; |
---|
59 | m_contactSolverType = 0; |
---|
60 | m_frictionSolverType = 0; |
---|
61 | m_additionalDamping = constructionInfo.m_additionalDamping; |
---|
62 | m_additionalDampingFactor = constructionInfo.m_additionalDampingFactor; |
---|
63 | m_additionalLinearDampingThresholdSqr = constructionInfo.m_additionalLinearDampingThresholdSqr; |
---|
64 | m_additionalAngularDampingThresholdSqr = constructionInfo.m_additionalAngularDampingThresholdSqr; |
---|
65 | m_additionalAngularDampingFactor = constructionInfo.m_additionalAngularDampingFactor; |
---|
66 | |
---|
67 | if (m_optionalMotionState) |
---|
68 | { |
---|
69 | m_optionalMotionState->getWorldTransform(m_worldTransform); |
---|
70 | } else |
---|
71 | { |
---|
72 | m_worldTransform = constructionInfo.m_startWorldTransform; |
---|
73 | } |
---|
74 | |
---|
75 | m_interpolationWorldTransform = m_worldTransform; |
---|
76 | m_interpolationLinearVelocity.setValue(0,0,0); |
---|
77 | m_interpolationAngularVelocity.setValue(0,0,0); |
---|
78 | |
---|
79 | //moved to btCollisionObject |
---|
80 | m_friction = constructionInfo.m_friction; |
---|
81 | m_restitution = constructionInfo.m_restitution; |
---|
82 | |
---|
83 | setCollisionShape( constructionInfo.m_collisionShape ); |
---|
84 | m_debugBodyId = uniqueId++; |
---|
85 | |
---|
86 | setMassProps(constructionInfo.m_mass, constructionInfo.m_localInertia); |
---|
87 | updateInertiaTensor(); |
---|
88 | |
---|
89 | m_rigidbodyFlags = 0; |
---|
90 | |
---|
91 | |
---|
92 | m_deltaLinearVelocity.setZero(); |
---|
93 | m_deltaAngularVelocity.setZero(); |
---|
94 | m_invMass = m_inverseMass*m_linearFactor; |
---|
95 | m_pushVelocity.setZero(); |
---|
96 | m_turnVelocity.setZero(); |
---|
97 | |
---|
98 | |
---|
99 | |
---|
100 | } |
---|
101 | |
---|
102 | |
---|
103 | void btRigidBody::predictIntegratedTransform(btScalar timeStep,btTransform& predictedTransform) |
---|
104 | { |
---|
105 | btTransformUtil::integrateTransform(m_worldTransform,m_linearVelocity,m_angularVelocity,timeStep,predictedTransform); |
---|
106 | } |
---|
107 | |
---|
108 | void btRigidBody::saveKinematicState(btScalar timeStep) |
---|
109 | { |
---|
110 | //todo: clamp to some (user definable) safe minimum timestep, to limit maximum angular/linear velocities |
---|
111 | if (timeStep != btScalar(0.)) |
---|
112 | { |
---|
113 | //if we use motionstate to synchronize world transforms, get the new kinematic/animated world transform |
---|
114 | if (getMotionState()) |
---|
115 | getMotionState()->getWorldTransform(m_worldTransform); |
---|
116 | btVector3 linVel,angVel; |
---|
117 | |
---|
118 | btTransformUtil::calculateVelocity(m_interpolationWorldTransform,m_worldTransform,timeStep,m_linearVelocity,m_angularVelocity); |
---|
119 | m_interpolationLinearVelocity = m_linearVelocity; |
---|
120 | m_interpolationAngularVelocity = m_angularVelocity; |
---|
121 | m_interpolationWorldTransform = m_worldTransform; |
---|
122 | //printf("angular = %f %f %f\n",m_angularVelocity.getX(),m_angularVelocity.getY(),m_angularVelocity.getZ()); |
---|
123 | } |
---|
124 | } |
---|
125 | |
---|
126 | void btRigidBody::getAabb(btVector3& aabbMin,btVector3& aabbMax) const |
---|
127 | { |
---|
128 | getCollisionShape()->getAabb(m_worldTransform,aabbMin,aabbMax); |
---|
129 | } |
---|
130 | |
---|
131 | |
---|
132 | |
---|
133 | |
---|
134 | void btRigidBody::setGravity(const btVector3& acceleration) |
---|
135 | { |
---|
136 | if (m_inverseMass != btScalar(0.0)) |
---|
137 | { |
---|
138 | m_gravity = acceleration * (btScalar(1.0) / m_inverseMass); |
---|
139 | } |
---|
140 | m_gravity_acceleration = acceleration; |
---|
141 | } |
---|
142 | |
---|
143 | |
---|
144 | |
---|
145 | |
---|
146 | |
---|
147 | |
---|
148 | void btRigidBody::setDamping(btScalar lin_damping, btScalar ang_damping) |
---|
149 | { |
---|
150 | m_linearDamping = btClamped(lin_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); |
---|
151 | m_angularDamping = btClamped(ang_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); |
---|
152 | } |
---|
153 | |
---|
154 | |
---|
155 | |
---|
156 | |
---|
157 | ///applyDamping damps the velocity, using the given m_linearDamping and m_angularDamping |
---|
158 | void btRigidBody::applyDamping(btScalar timeStep) |
---|
159 | { |
---|
160 | //On new damping: see discussion/issue report here: http://code.google.com/p/bullet/issues/detail?id=74 |
---|
161 | //todo: do some performance comparisons (but other parts of the engine are probably bottleneck anyway |
---|
162 | |
---|
163 | //#define USE_OLD_DAMPING_METHOD 1 |
---|
164 | #ifdef USE_OLD_DAMPING_METHOD |
---|
165 | m_linearVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_linearDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); |
---|
166 | m_angularVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_angularDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); |
---|
167 | #else |
---|
168 | m_linearVelocity *= btPow(btScalar(1)-m_linearDamping, timeStep); |
---|
169 | m_angularVelocity *= btPow(btScalar(1)-m_angularDamping, timeStep); |
---|
170 | #endif |
---|
171 | |
---|
172 | if (m_additionalDamping) |
---|
173 | { |
---|
174 | //Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc. |
---|
175 | //Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete |
---|
176 | if ((m_angularVelocity.length2() < m_additionalAngularDampingThresholdSqr) && |
---|
177 | (m_linearVelocity.length2() < m_additionalLinearDampingThresholdSqr)) |
---|
178 | { |
---|
179 | m_angularVelocity *= m_additionalDampingFactor; |
---|
180 | m_linearVelocity *= m_additionalDampingFactor; |
---|
181 | } |
---|
182 | |
---|
183 | |
---|
184 | btScalar speed = m_linearVelocity.length(); |
---|
185 | if (speed < m_linearDamping) |
---|
186 | { |
---|
187 | btScalar dampVel = btScalar(0.005); |
---|
188 | if (speed > dampVel) |
---|
189 | { |
---|
190 | btVector3 dir = m_linearVelocity.normalized(); |
---|
191 | m_linearVelocity -= dir * dampVel; |
---|
192 | } else |
---|
193 | { |
---|
194 | m_linearVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
195 | } |
---|
196 | } |
---|
197 | |
---|
198 | btScalar angSpeed = m_angularVelocity.length(); |
---|
199 | if (angSpeed < m_angularDamping) |
---|
200 | { |
---|
201 | btScalar angDampVel = btScalar(0.005); |
---|
202 | if (angSpeed > angDampVel) |
---|
203 | { |
---|
204 | btVector3 dir = m_angularVelocity.normalized(); |
---|
205 | m_angularVelocity -= dir * angDampVel; |
---|
206 | } else |
---|
207 | { |
---|
208 | m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
209 | } |
---|
210 | } |
---|
211 | } |
---|
212 | } |
---|
213 | |
---|
214 | |
---|
215 | void btRigidBody::applyGravity() |
---|
216 | { |
---|
217 | if (isStaticOrKinematicObject()) |
---|
218 | return; |
---|
219 | |
---|
220 | applyCentralForce(m_gravity); |
---|
221 | |
---|
222 | } |
---|
223 | |
---|
224 | void btRigidBody::proceedToTransform(const btTransform& newTrans) |
---|
225 | { |
---|
226 | setCenterOfMassTransform( newTrans ); |
---|
227 | } |
---|
228 | |
---|
229 | |
---|
230 | void btRigidBody::setMassProps(btScalar mass, const btVector3& inertia) |
---|
231 | { |
---|
232 | if (mass == btScalar(0.)) |
---|
233 | { |
---|
234 | m_collisionFlags |= btCollisionObject::CF_STATIC_OBJECT; |
---|
235 | m_inverseMass = btScalar(0.); |
---|
236 | } else |
---|
237 | { |
---|
238 | m_collisionFlags &= (~btCollisionObject::CF_STATIC_OBJECT); |
---|
239 | m_inverseMass = btScalar(1.0) / mass; |
---|
240 | } |
---|
241 | |
---|
242 | //Fg = m * a |
---|
243 | m_gravity = mass * m_gravity_acceleration; |
---|
244 | |
---|
245 | m_invInertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x(): btScalar(0.0), |
---|
246 | inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y(): btScalar(0.0), |
---|
247 | inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z(): btScalar(0.0)); |
---|
248 | |
---|
249 | m_invMass = m_linearFactor*m_inverseMass; |
---|
250 | } |
---|
251 | |
---|
252 | |
---|
253 | |
---|
254 | void btRigidBody::updateInertiaTensor() |
---|
255 | { |
---|
256 | m_invInertiaTensorWorld = m_worldTransform.getBasis().scaled(m_invInertiaLocal) * m_worldTransform.getBasis().transpose(); |
---|
257 | } |
---|
258 | |
---|
259 | |
---|
260 | void btRigidBody::integrateVelocities(btScalar step) |
---|
261 | { |
---|
262 | if (isStaticOrKinematicObject()) |
---|
263 | return; |
---|
264 | |
---|
265 | m_linearVelocity += m_totalForce * (m_inverseMass * step); |
---|
266 | m_angularVelocity += m_invInertiaTensorWorld * m_totalTorque * step; |
---|
267 | |
---|
268 | #define MAX_ANGVEL SIMD_HALF_PI |
---|
269 | /// clamp angular velocity. collision calculations will fail on higher angular velocities |
---|
270 | btScalar angvel = m_angularVelocity.length(); |
---|
271 | if (angvel*step > MAX_ANGVEL) |
---|
272 | { |
---|
273 | m_angularVelocity *= (MAX_ANGVEL/step) /angvel; |
---|
274 | } |
---|
275 | |
---|
276 | } |
---|
277 | |
---|
278 | btQuaternion btRigidBody::getOrientation() const |
---|
279 | { |
---|
280 | btQuaternion orn; |
---|
281 | m_worldTransform.getBasis().getRotation(orn); |
---|
282 | return orn; |
---|
283 | } |
---|
284 | |
---|
285 | |
---|
286 | void btRigidBody::setCenterOfMassTransform(const btTransform& xform) |
---|
287 | { |
---|
288 | |
---|
289 | if (isStaticOrKinematicObject()) |
---|
290 | { |
---|
291 | m_interpolationWorldTransform = m_worldTransform; |
---|
292 | } else |
---|
293 | { |
---|
294 | m_interpolationWorldTransform = xform; |
---|
295 | } |
---|
296 | m_interpolationLinearVelocity = getLinearVelocity(); |
---|
297 | m_interpolationAngularVelocity = getAngularVelocity(); |
---|
298 | m_worldTransform = xform; |
---|
299 | updateInertiaTensor(); |
---|
300 | } |
---|
301 | |
---|
302 | |
---|
303 | bool btRigidBody::checkCollideWithOverride(btCollisionObject* co) |
---|
304 | { |
---|
305 | btRigidBody* otherRb = btRigidBody::upcast(co); |
---|
306 | if (!otherRb) |
---|
307 | return true; |
---|
308 | |
---|
309 | for (int i = 0; i < m_constraintRefs.size(); ++i) |
---|
310 | { |
---|
311 | btTypedConstraint* c = m_constraintRefs[i]; |
---|
312 | if (&c->getRigidBodyA() == otherRb || &c->getRigidBodyB() == otherRb) |
---|
313 | return false; |
---|
314 | } |
---|
315 | |
---|
316 | return true; |
---|
317 | } |
---|
318 | |
---|
319 | void btRigidBody::internalWritebackVelocity(btScalar timeStep) |
---|
320 | { |
---|
321 | (void) timeStep; |
---|
322 | if (m_inverseMass) |
---|
323 | { |
---|
324 | setLinearVelocity(getLinearVelocity()+ m_deltaLinearVelocity); |
---|
325 | setAngularVelocity(getAngularVelocity()+m_deltaAngularVelocity); |
---|
326 | |
---|
327 | //correct the position/orientation based on push/turn recovery |
---|
328 | btTransform newTransform; |
---|
329 | btTransformUtil::integrateTransform(getWorldTransform(),m_pushVelocity,m_turnVelocity,timeStep,newTransform); |
---|
330 | setWorldTransform(newTransform); |
---|
331 | //m_originalBody->setCompanionId(-1); |
---|
332 | } |
---|
333 | // m_deltaLinearVelocity.setZero(); |
---|
334 | // m_deltaAngularVelocity .setZero(); |
---|
335 | // m_pushVelocity.setZero(); |
---|
336 | // m_turnVelocity.setZero(); |
---|
337 | } |
---|
338 | |
---|
339 | |
---|
340 | |
---|
341 | void btRigidBody::addConstraintRef(btTypedConstraint* c) |
---|
342 | { |
---|
343 | int index = m_constraintRefs.findLinearSearch(c); |
---|
344 | if (index == m_constraintRefs.size()) |
---|
345 | m_constraintRefs.push_back(c); |
---|
346 | |
---|
347 | m_checkCollideWith = true; |
---|
348 | } |
---|
349 | |
---|
350 | void btRigidBody::removeConstraintRef(btTypedConstraint* c) |
---|
351 | { |
---|
352 | m_constraintRefs.remove(c); |
---|
353 | m_checkCollideWith = m_constraintRefs.size() > 0; |
---|
354 | } |
---|
355 | |
---|
356 | int btRigidBody::calculateSerializeBufferSize() const |
---|
357 | { |
---|
358 | int sz = sizeof(btRigidBodyData); |
---|
359 | return sz; |
---|
360 | } |
---|
361 | |
---|
362 | ///fills the dataBuffer and returns the struct name (and 0 on failure) |
---|
363 | const char* btRigidBody::serialize(void* dataBuffer, class btSerializer* serializer) const |
---|
364 | { |
---|
365 | btRigidBodyData* rbd = (btRigidBodyData*) dataBuffer; |
---|
366 | |
---|
367 | btCollisionObject::serialize(&rbd->m_collisionObjectData, serializer); |
---|
368 | |
---|
369 | m_invInertiaTensorWorld.serialize(rbd->m_invInertiaTensorWorld); |
---|
370 | m_linearVelocity.serialize(rbd->m_linearVelocity); |
---|
371 | m_angularVelocity.serialize(rbd->m_angularVelocity); |
---|
372 | rbd->m_inverseMass = m_inverseMass; |
---|
373 | m_angularFactor.serialize(rbd->m_angularFactor); |
---|
374 | m_linearFactor.serialize(rbd->m_linearFactor); |
---|
375 | m_gravity.serialize(rbd->m_gravity); |
---|
376 | m_gravity_acceleration.serialize(rbd->m_gravity_acceleration); |
---|
377 | m_invInertiaLocal.serialize(rbd->m_invInertiaLocal); |
---|
378 | m_totalForce.serialize(rbd->m_totalForce); |
---|
379 | m_totalTorque.serialize(rbd->m_totalTorque); |
---|
380 | rbd->m_linearDamping = m_linearDamping; |
---|
381 | rbd->m_angularDamping = m_angularDamping; |
---|
382 | rbd->m_additionalDamping = m_additionalDamping; |
---|
383 | rbd->m_additionalDampingFactor = m_additionalDampingFactor; |
---|
384 | rbd->m_additionalLinearDampingThresholdSqr = m_additionalLinearDampingThresholdSqr; |
---|
385 | rbd->m_additionalAngularDampingThresholdSqr = m_additionalAngularDampingThresholdSqr; |
---|
386 | rbd->m_additionalAngularDampingFactor = m_additionalAngularDampingFactor; |
---|
387 | rbd->m_linearSleepingThreshold=m_linearSleepingThreshold; |
---|
388 | rbd->m_angularSleepingThreshold = m_angularSleepingThreshold; |
---|
389 | |
---|
390 | return btRigidBodyDataName; |
---|
391 | } |
---|
392 | |
---|
393 | |
---|
394 | |
---|
395 | void btRigidBody::serializeSingleObject(class btSerializer* serializer) const |
---|
396 | { |
---|
397 | btChunk* chunk = serializer->allocate(calculateSerializeBufferSize(),1); |
---|
398 | const char* structType = serialize(chunk->m_oldPtr, serializer); |
---|
399 | serializer->finalizeChunk(chunk,structType,BT_RIGIDBODY_CODE,(void*)this); |
---|
400 | } |
---|
401 | |
---|
402 | |
---|