1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | #ifndef RIGIDBODY_H |
---|
17 | #define RIGIDBODY_H |
---|
18 | |
---|
19 | #include "LinearMath/btAlignedObjectArray.h" |
---|
20 | #include "LinearMath/btTransform.h" |
---|
21 | #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" |
---|
22 | #include "BulletCollision/CollisionDispatch/btCollisionObject.h" |
---|
23 | |
---|
24 | class btCollisionShape; |
---|
25 | class btMotionState; |
---|
26 | class btTypedConstraint; |
---|
27 | |
---|
28 | |
---|
29 | extern btScalar gDeactivationTime; |
---|
30 | extern bool gDisableDeactivation; |
---|
31 | |
---|
32 | |
---|
33 | ///The btRigidBody is the main class for rigid body objects. It is derived from btCollisionObject, so it keeps a pointer to a btCollisionShape. |
---|
34 | ///It is recommended for performance and memory use to share btCollisionShape objects whenever possible. |
---|
35 | ///There are 3 types of rigid bodies: |
---|
36 | ///- A) Dynamic rigid bodies, with positive mass. Motion is controlled by rigid body dynamics. |
---|
37 | ///- B) Fixed objects with zero mass. They are not moving (basically collision objects) |
---|
38 | ///- C) Kinematic objects, which are objects without mass, but the user can move them. There is on-way interaction, and Bullet calculates a velocity based on the timestep and previous and current world transform. |
---|
39 | ///Bullet automatically deactivates dynamic rigid bodies, when the velocity is below a threshold for a given time. |
---|
40 | ///Deactivated (sleeping) rigid bodies don't take any processing time, except a minor broadphase collision detection impact (to allow active objects to activate/wake up sleeping objects) |
---|
41 | class btRigidBody : public btCollisionObject |
---|
42 | { |
---|
43 | |
---|
44 | btMatrix3x3 m_invInertiaTensorWorld; |
---|
45 | btVector3 m_linearVelocity; |
---|
46 | btVector3 m_angularVelocity; |
---|
47 | btScalar m_inverseMass; |
---|
48 | btScalar m_angularFactor; |
---|
49 | |
---|
50 | btVector3 m_gravity; |
---|
51 | btVector3 m_gravity_acceleration; |
---|
52 | btVector3 m_invInertiaLocal; |
---|
53 | btVector3 m_totalForce; |
---|
54 | btVector3 m_totalTorque; |
---|
55 | |
---|
56 | btScalar m_linearDamping; |
---|
57 | btScalar m_angularDamping; |
---|
58 | |
---|
59 | bool m_additionalDamping; |
---|
60 | btScalar m_additionalDampingFactor; |
---|
61 | btScalar m_additionalLinearDampingThresholdSqr; |
---|
62 | btScalar m_additionalAngularDampingThresholdSqr; |
---|
63 | btScalar m_additionalAngularDampingFactor; |
---|
64 | |
---|
65 | |
---|
66 | btScalar m_linearSleepingThreshold; |
---|
67 | btScalar m_angularSleepingThreshold; |
---|
68 | |
---|
69 | //m_optionalMotionState allows to automatic synchronize the world transform for active objects |
---|
70 | btMotionState* m_optionalMotionState; |
---|
71 | |
---|
72 | //keep track of typed constraints referencing this rigid body |
---|
73 | btAlignedObjectArray<btTypedConstraint*> m_constraintRefs; |
---|
74 | |
---|
75 | public: |
---|
76 | |
---|
77 | |
---|
78 | ///The btRigidBodyConstructionInfo structure provides information to create a rigid body. Setting mass to zero creates a fixed (non-dynamic) rigid body. |
---|
79 | ///For dynamic objects, you can use the collision shape to approximate the local inertia tensor, otherwise use the zero vector (default argument) |
---|
80 | ///You can use the motion state to synchronize the world transform between physics and graphics objects. |
---|
81 | ///And if the motion state is provided, the rigid body will initialize its initial world transform from the motion state, |
---|
82 | ///m_startWorldTransform is only used when you don't provide a motion state. |
---|
83 | struct btRigidBodyConstructionInfo |
---|
84 | { |
---|
85 | btScalar m_mass; |
---|
86 | |
---|
87 | ///When a motionState is provided, the rigid body will initialize its world transform from the motion state |
---|
88 | ///In this case, m_startWorldTransform is ignored. |
---|
89 | btMotionState* m_motionState; |
---|
90 | btTransform m_startWorldTransform; |
---|
91 | |
---|
92 | btCollisionShape* m_collisionShape; |
---|
93 | btVector3 m_localInertia; |
---|
94 | btScalar m_linearDamping; |
---|
95 | btScalar m_angularDamping; |
---|
96 | |
---|
97 | ///best simulation results when friction is non-zero |
---|
98 | btScalar m_friction; |
---|
99 | ///best simulation results using zero restitution. |
---|
100 | btScalar m_restitution; |
---|
101 | |
---|
102 | btScalar m_linearSleepingThreshold; |
---|
103 | btScalar m_angularSleepingThreshold; |
---|
104 | |
---|
105 | //Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc. |
---|
106 | //Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete |
---|
107 | bool m_additionalDamping; |
---|
108 | btScalar m_additionalDampingFactor; |
---|
109 | btScalar m_additionalLinearDampingThresholdSqr; |
---|
110 | btScalar m_additionalAngularDampingThresholdSqr; |
---|
111 | btScalar m_additionalAngularDampingFactor; |
---|
112 | |
---|
113 | |
---|
114 | btRigidBodyConstructionInfo( btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0)): |
---|
115 | m_mass(mass), |
---|
116 | m_motionState(motionState), |
---|
117 | m_collisionShape(collisionShape), |
---|
118 | m_localInertia(localInertia), |
---|
119 | m_linearDamping(btScalar(0.)), |
---|
120 | m_angularDamping(btScalar(0.)), |
---|
121 | m_friction(btScalar(0.5)), |
---|
122 | m_restitution(btScalar(0.)), |
---|
123 | m_linearSleepingThreshold(btScalar(0.8)), |
---|
124 | m_angularSleepingThreshold(btScalar(1.f)), |
---|
125 | m_additionalDamping(false), |
---|
126 | m_additionalDampingFactor(btScalar(0.005)), |
---|
127 | m_additionalLinearDampingThresholdSqr(btScalar(0.01)), |
---|
128 | m_additionalAngularDampingThresholdSqr(btScalar(0.01)), |
---|
129 | m_additionalAngularDampingFactor(btScalar(0.01)) |
---|
130 | { |
---|
131 | m_startWorldTransform.setIdentity(); |
---|
132 | } |
---|
133 | }; |
---|
134 | |
---|
135 | ///btRigidBody constructor using construction info |
---|
136 | btRigidBody( const btRigidBodyConstructionInfo& constructionInfo); |
---|
137 | |
---|
138 | ///btRigidBody constructor for backwards compatibility. |
---|
139 | ///To specify friction (etc) during rigid body construction, please use the other constructor (using btRigidBodyConstructionInfo) |
---|
140 | btRigidBody( btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0)); |
---|
141 | |
---|
142 | |
---|
143 | virtual ~btRigidBody() |
---|
144 | { |
---|
145 | //No constraints should point to this rigidbody |
---|
146 | //Remove constraints from the dynamics world before you delete the related rigidbodies. |
---|
147 | btAssert(m_constraintRefs.size()==0); |
---|
148 | } |
---|
149 | |
---|
150 | protected: |
---|
151 | |
---|
152 | ///setupRigidBody is only used internally by the constructor |
---|
153 | void setupRigidBody(const btRigidBodyConstructionInfo& constructionInfo); |
---|
154 | |
---|
155 | public: |
---|
156 | |
---|
157 | void proceedToTransform(const btTransform& newTrans); |
---|
158 | |
---|
159 | ///to keep collision detection and dynamics separate we don't store a rigidbody pointer |
---|
160 | ///but a rigidbody is derived from btCollisionObject, so we can safely perform an upcast |
---|
161 | static const btRigidBody* upcast(const btCollisionObject* colObj) |
---|
162 | { |
---|
163 | if (colObj->getInternalType()==btCollisionObject::CO_RIGID_BODY) |
---|
164 | return (const btRigidBody*)colObj; |
---|
165 | return 0; |
---|
166 | } |
---|
167 | static btRigidBody* upcast(btCollisionObject* colObj) |
---|
168 | { |
---|
169 | if (colObj->getInternalType()==btCollisionObject::CO_RIGID_BODY) |
---|
170 | return (btRigidBody*)colObj; |
---|
171 | return 0; |
---|
172 | } |
---|
173 | |
---|
174 | /// continuous collision detection needs prediction |
---|
175 | void predictIntegratedTransform(btScalar step, btTransform& predictedTransform) ; |
---|
176 | |
---|
177 | void saveKinematicState(btScalar step); |
---|
178 | |
---|
179 | void applyGravity(); |
---|
180 | |
---|
181 | void setGravity(const btVector3& acceleration); |
---|
182 | |
---|
183 | const btVector3& getGravity() const |
---|
184 | { |
---|
185 | return m_gravity_acceleration; |
---|
186 | } |
---|
187 | |
---|
188 | void setDamping(btScalar lin_damping, btScalar ang_damping); |
---|
189 | |
---|
190 | btScalar getLinearDamping() const |
---|
191 | { |
---|
192 | return m_linearDamping; |
---|
193 | } |
---|
194 | |
---|
195 | btScalar getAngularDamping() const |
---|
196 | { |
---|
197 | return m_angularDamping; |
---|
198 | } |
---|
199 | |
---|
200 | btScalar getLinearSleepingThreshold() const |
---|
201 | { |
---|
202 | return m_linearSleepingThreshold; |
---|
203 | } |
---|
204 | |
---|
205 | btScalar getAngularSleepingThreshold() const |
---|
206 | { |
---|
207 | return m_angularSleepingThreshold; |
---|
208 | } |
---|
209 | |
---|
210 | void applyDamping(btScalar timeStep); |
---|
211 | |
---|
212 | SIMD_FORCE_INLINE const btCollisionShape* getCollisionShape() const { |
---|
213 | return m_collisionShape; |
---|
214 | } |
---|
215 | |
---|
216 | SIMD_FORCE_INLINE btCollisionShape* getCollisionShape() { |
---|
217 | return m_collisionShape; |
---|
218 | } |
---|
219 | |
---|
220 | void setMassProps(btScalar mass, const btVector3& inertia); |
---|
221 | |
---|
222 | btScalar getInvMass() const { return m_inverseMass; } |
---|
223 | const btMatrix3x3& getInvInertiaTensorWorld() const { |
---|
224 | return m_invInertiaTensorWorld; |
---|
225 | } |
---|
226 | |
---|
227 | void integrateVelocities(btScalar step); |
---|
228 | |
---|
229 | void setCenterOfMassTransform(const btTransform& xform); |
---|
230 | |
---|
231 | void applyCentralForce(const btVector3& force) |
---|
232 | { |
---|
233 | m_totalForce += force; |
---|
234 | } |
---|
235 | |
---|
236 | const btVector3& getTotalForce() |
---|
237 | { |
---|
238 | return m_totalForce; |
---|
239 | }; |
---|
240 | |
---|
241 | const btVector3& getTotalTorque() |
---|
242 | { |
---|
243 | return m_totalTorque; |
---|
244 | }; |
---|
245 | |
---|
246 | const btVector3& getInvInertiaDiagLocal() const |
---|
247 | { |
---|
248 | return m_invInertiaLocal; |
---|
249 | }; |
---|
250 | |
---|
251 | void setInvInertiaDiagLocal(const btVector3& diagInvInertia) |
---|
252 | { |
---|
253 | m_invInertiaLocal = diagInvInertia; |
---|
254 | } |
---|
255 | |
---|
256 | void setSleepingThresholds(btScalar linear,btScalar angular) |
---|
257 | { |
---|
258 | m_linearSleepingThreshold = linear; |
---|
259 | m_angularSleepingThreshold = angular; |
---|
260 | } |
---|
261 | |
---|
262 | void applyTorque(const btVector3& torque) |
---|
263 | { |
---|
264 | m_totalTorque += torque; |
---|
265 | } |
---|
266 | |
---|
267 | void applyForce(const btVector3& force, const btVector3& rel_pos) |
---|
268 | { |
---|
269 | applyCentralForce(force); |
---|
270 | applyTorque(rel_pos.cross(force)*m_angularFactor); |
---|
271 | } |
---|
272 | |
---|
273 | void applyCentralImpulse(const btVector3& impulse) |
---|
274 | { |
---|
275 | m_linearVelocity += impulse * m_inverseMass; |
---|
276 | } |
---|
277 | |
---|
278 | void applyTorqueImpulse(const btVector3& torque) |
---|
279 | { |
---|
280 | m_angularVelocity += m_invInertiaTensorWorld * torque; |
---|
281 | } |
---|
282 | |
---|
283 | void applyImpulse(const btVector3& impulse, const btVector3& rel_pos) |
---|
284 | { |
---|
285 | if (m_inverseMass != btScalar(0.)) |
---|
286 | { |
---|
287 | applyCentralImpulse(impulse); |
---|
288 | if (m_angularFactor) |
---|
289 | { |
---|
290 | applyTorqueImpulse(rel_pos.cross(impulse)*m_angularFactor); |
---|
291 | } |
---|
292 | } |
---|
293 | } |
---|
294 | |
---|
295 | //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position |
---|
296 | SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude) |
---|
297 | { |
---|
298 | if (m_inverseMass != btScalar(0.)) |
---|
299 | { |
---|
300 | m_linearVelocity += linearComponent*impulseMagnitude; |
---|
301 | if (m_angularFactor) |
---|
302 | { |
---|
303 | m_angularVelocity += angularComponent*impulseMagnitude*m_angularFactor; |
---|
304 | } |
---|
305 | } |
---|
306 | } |
---|
307 | |
---|
308 | void clearForces() |
---|
309 | { |
---|
310 | m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); |
---|
311 | m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); |
---|
312 | } |
---|
313 | |
---|
314 | void updateInertiaTensor(); |
---|
315 | |
---|
316 | const btVector3& getCenterOfMassPosition() const { |
---|
317 | return m_worldTransform.getOrigin(); |
---|
318 | } |
---|
319 | btQuaternion getOrientation() const; |
---|
320 | |
---|
321 | const btTransform& getCenterOfMassTransform() const { |
---|
322 | return m_worldTransform; |
---|
323 | } |
---|
324 | const btVector3& getLinearVelocity() const { |
---|
325 | return m_linearVelocity; |
---|
326 | } |
---|
327 | const btVector3& getAngularVelocity() const { |
---|
328 | return m_angularVelocity; |
---|
329 | } |
---|
330 | |
---|
331 | |
---|
332 | inline void setLinearVelocity(const btVector3& lin_vel) |
---|
333 | { |
---|
334 | m_linearVelocity = lin_vel; |
---|
335 | } |
---|
336 | |
---|
337 | inline void setAngularVelocity(const btVector3& ang_vel) |
---|
338 | { |
---|
339 | m_angularVelocity = ang_vel; |
---|
340 | } |
---|
341 | |
---|
342 | btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const |
---|
343 | { |
---|
344 | //we also calculate lin/ang velocity for kinematic objects |
---|
345 | return m_linearVelocity + m_angularVelocity.cross(rel_pos); |
---|
346 | |
---|
347 | //for kinematic objects, we could also use use: |
---|
348 | // return (m_worldTransform(rel_pos) - m_interpolationWorldTransform(rel_pos)) / m_kinematicTimeStep; |
---|
349 | } |
---|
350 | |
---|
351 | void translate(const btVector3& v) |
---|
352 | { |
---|
353 | m_worldTransform.getOrigin() += v; |
---|
354 | } |
---|
355 | |
---|
356 | |
---|
357 | void getAabb(btVector3& aabbMin,btVector3& aabbMax) const; |
---|
358 | |
---|
359 | |
---|
360 | |
---|
361 | |
---|
362 | |
---|
363 | SIMD_FORCE_INLINE btScalar computeImpulseDenominator(const btVector3& pos, const btVector3& normal) const |
---|
364 | { |
---|
365 | btVector3 r0 = pos - getCenterOfMassPosition(); |
---|
366 | |
---|
367 | btVector3 c0 = (r0).cross(normal); |
---|
368 | |
---|
369 | btVector3 vec = (c0 * getInvInertiaTensorWorld()).cross(r0); |
---|
370 | |
---|
371 | return m_inverseMass + normal.dot(vec); |
---|
372 | |
---|
373 | } |
---|
374 | |
---|
375 | SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis) const |
---|
376 | { |
---|
377 | btVector3 vec = axis * getInvInertiaTensorWorld(); |
---|
378 | return axis.dot(vec); |
---|
379 | } |
---|
380 | |
---|
381 | SIMD_FORCE_INLINE void updateDeactivation(btScalar timeStep) |
---|
382 | { |
---|
383 | if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION)) |
---|
384 | return; |
---|
385 | |
---|
386 | if ((getLinearVelocity().length2() < m_linearSleepingThreshold*m_linearSleepingThreshold) && |
---|
387 | (getAngularVelocity().length2() < m_angularSleepingThreshold*m_angularSleepingThreshold)) |
---|
388 | { |
---|
389 | m_deactivationTime += timeStep; |
---|
390 | } else |
---|
391 | { |
---|
392 | m_deactivationTime=btScalar(0.); |
---|
393 | setActivationState(0); |
---|
394 | } |
---|
395 | |
---|
396 | } |
---|
397 | |
---|
398 | SIMD_FORCE_INLINE bool wantsSleeping() |
---|
399 | { |
---|
400 | |
---|
401 | if (getActivationState() == DISABLE_DEACTIVATION) |
---|
402 | return false; |
---|
403 | |
---|
404 | //disable deactivation |
---|
405 | if (gDisableDeactivation || (gDeactivationTime == btScalar(0.))) |
---|
406 | return false; |
---|
407 | |
---|
408 | if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION)) |
---|
409 | return true; |
---|
410 | |
---|
411 | if (m_deactivationTime> gDeactivationTime) |
---|
412 | { |
---|
413 | return true; |
---|
414 | } |
---|
415 | return false; |
---|
416 | } |
---|
417 | |
---|
418 | |
---|
419 | |
---|
420 | const btBroadphaseProxy* getBroadphaseProxy() const |
---|
421 | { |
---|
422 | return m_broadphaseHandle; |
---|
423 | } |
---|
424 | btBroadphaseProxy* getBroadphaseProxy() |
---|
425 | { |
---|
426 | return m_broadphaseHandle; |
---|
427 | } |
---|
428 | void setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy) |
---|
429 | { |
---|
430 | m_broadphaseHandle = broadphaseProxy; |
---|
431 | } |
---|
432 | |
---|
433 | //btMotionState allows to automatic synchronize the world transform for active objects |
---|
434 | btMotionState* getMotionState() |
---|
435 | { |
---|
436 | return m_optionalMotionState; |
---|
437 | } |
---|
438 | const btMotionState* getMotionState() const |
---|
439 | { |
---|
440 | return m_optionalMotionState; |
---|
441 | } |
---|
442 | void setMotionState(btMotionState* motionState) |
---|
443 | { |
---|
444 | m_optionalMotionState = motionState; |
---|
445 | if (m_optionalMotionState) |
---|
446 | motionState->getWorldTransform(m_worldTransform); |
---|
447 | } |
---|
448 | |
---|
449 | //for experimental overriding of friction/contact solver func |
---|
450 | int m_contactSolverType; |
---|
451 | int m_frictionSolverType; |
---|
452 | |
---|
453 | void setAngularFactor(btScalar angFac) |
---|
454 | { |
---|
455 | m_angularFactor = angFac; |
---|
456 | } |
---|
457 | btScalar getAngularFactor() const |
---|
458 | { |
---|
459 | return m_angularFactor; |
---|
460 | } |
---|
461 | |
---|
462 | //is this rigidbody added to a btCollisionWorld/btDynamicsWorld/btBroadphase? |
---|
463 | bool isInWorld() const |
---|
464 | { |
---|
465 | return (getBroadphaseProxy() != 0); |
---|
466 | } |
---|
467 | |
---|
468 | virtual bool checkCollideWithOverride(btCollisionObject* co); |
---|
469 | |
---|
470 | void addConstraintRef(btTypedConstraint* c); |
---|
471 | void removeConstraintRef(btTypedConstraint* c); |
---|
472 | |
---|
473 | btTypedConstraint* getConstraintRef(int index) |
---|
474 | { |
---|
475 | return m_constraintRefs[index]; |
---|
476 | } |
---|
477 | |
---|
478 | int getNumConstraintRefs() |
---|
479 | { |
---|
480 | return m_constraintRefs.size(); |
---|
481 | } |
---|
482 | |
---|
483 | int m_debugBodyId; |
---|
484 | }; |
---|
485 | |
---|
486 | |
---|
487 | |
---|
488 | #endif |
---|
489 | |
---|