1 | /* |
---|
2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
3 | |
---|
4 | This software is provided 'as-is', without any express or implied warranty. |
---|
5 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
6 | Permission is granted to anyone to use this software for any purpose, |
---|
7 | including commercial applications, and to alter it and redistribute it freely, |
---|
8 | subject to the following restrictions: |
---|
9 | |
---|
10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
12 | 3. This notice may not be removed or altered from any source distribution. |
---|
13 | */ |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | #ifndef BT_AABB_UTIL2 |
---|
18 | #define BT_AABB_UTIL2 |
---|
19 | |
---|
20 | #include "btTransform.h" |
---|
21 | #include "btVector3.h" |
---|
22 | #include "btMinMax.h" |
---|
23 | |
---|
24 | |
---|
25 | |
---|
26 | SIMD_FORCE_INLINE void AabbExpand (btVector3& aabbMin, |
---|
27 | btVector3& aabbMax, |
---|
28 | const btVector3& expansionMin, |
---|
29 | const btVector3& expansionMax) |
---|
30 | { |
---|
31 | aabbMin = aabbMin + expansionMin; |
---|
32 | aabbMax = aabbMax + expansionMax; |
---|
33 | } |
---|
34 | |
---|
35 | /// conservative test for overlap between two aabbs |
---|
36 | SIMD_FORCE_INLINE bool TestPointAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1, |
---|
37 | const btVector3 &point) |
---|
38 | { |
---|
39 | bool overlap = true; |
---|
40 | overlap = (aabbMin1.getX() > point.getX() || aabbMax1.getX() < point.getX()) ? false : overlap; |
---|
41 | overlap = (aabbMin1.getZ() > point.getZ() || aabbMax1.getZ() < point.getZ()) ? false : overlap; |
---|
42 | overlap = (aabbMin1.getY() > point.getY() || aabbMax1.getY() < point.getY()) ? false : overlap; |
---|
43 | return overlap; |
---|
44 | } |
---|
45 | |
---|
46 | |
---|
47 | /// conservative test for overlap between two aabbs |
---|
48 | SIMD_FORCE_INLINE bool TestAabbAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1, |
---|
49 | const btVector3 &aabbMin2, const btVector3 &aabbMax2) |
---|
50 | { |
---|
51 | bool overlap = true; |
---|
52 | overlap = (aabbMin1.getX() > aabbMax2.getX() || aabbMax1.getX() < aabbMin2.getX()) ? false : overlap; |
---|
53 | overlap = (aabbMin1.getZ() > aabbMax2.getZ() || aabbMax1.getZ() < aabbMin2.getZ()) ? false : overlap; |
---|
54 | overlap = (aabbMin1.getY() > aabbMax2.getY() || aabbMax1.getY() < aabbMin2.getY()) ? false : overlap; |
---|
55 | return overlap; |
---|
56 | } |
---|
57 | |
---|
58 | /// conservative test for overlap between triangle and aabb |
---|
59 | SIMD_FORCE_INLINE bool TestTriangleAgainstAabb2(const btVector3 *vertices, |
---|
60 | const btVector3 &aabbMin, const btVector3 &aabbMax) |
---|
61 | { |
---|
62 | const btVector3 &p1 = vertices[0]; |
---|
63 | const btVector3 &p2 = vertices[1]; |
---|
64 | const btVector3 &p3 = vertices[2]; |
---|
65 | |
---|
66 | if (btMin(btMin(p1[0], p2[0]), p3[0]) > aabbMax[0]) return false; |
---|
67 | if (btMax(btMax(p1[0], p2[0]), p3[0]) < aabbMin[0]) return false; |
---|
68 | |
---|
69 | if (btMin(btMin(p1[2], p2[2]), p3[2]) > aabbMax[2]) return false; |
---|
70 | if (btMax(btMax(p1[2], p2[2]), p3[2]) < aabbMin[2]) return false; |
---|
71 | |
---|
72 | if (btMin(btMin(p1[1], p2[1]), p3[1]) > aabbMax[1]) return false; |
---|
73 | if (btMax(btMax(p1[1], p2[1]), p3[1]) < aabbMin[1]) return false; |
---|
74 | return true; |
---|
75 | } |
---|
76 | |
---|
77 | |
---|
78 | SIMD_FORCE_INLINE int btOutcode(const btVector3& p,const btVector3& halfExtent) |
---|
79 | { |
---|
80 | return (p.getX() < -halfExtent.getX() ? 0x01 : 0x0) | |
---|
81 | (p.getX() > halfExtent.getX() ? 0x08 : 0x0) | |
---|
82 | (p.getY() < -halfExtent.getY() ? 0x02 : 0x0) | |
---|
83 | (p.getY() > halfExtent.getY() ? 0x10 : 0x0) | |
---|
84 | (p.getZ() < -halfExtent.getZ() ? 0x4 : 0x0) | |
---|
85 | (p.getZ() > halfExtent.getZ() ? 0x20 : 0x0); |
---|
86 | } |
---|
87 | |
---|
88 | |
---|
89 | |
---|
90 | SIMD_FORCE_INLINE bool btRayAabb2(const btVector3& rayFrom, |
---|
91 | const btVector3& rayInvDirection, |
---|
92 | const unsigned int raySign[3], |
---|
93 | const btVector3 bounds[2], |
---|
94 | btScalar& tmin, |
---|
95 | btScalar lambda_min, |
---|
96 | btScalar lambda_max) |
---|
97 | { |
---|
98 | btScalar tmax, tymin, tymax, tzmin, tzmax; |
---|
99 | tmin = (bounds[raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX(); |
---|
100 | tmax = (bounds[1-raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX(); |
---|
101 | tymin = (bounds[raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY(); |
---|
102 | tymax = (bounds[1-raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY(); |
---|
103 | |
---|
104 | if ( (tmin > tymax) || (tymin > tmax) ) |
---|
105 | return false; |
---|
106 | |
---|
107 | if (tymin > tmin) |
---|
108 | tmin = tymin; |
---|
109 | |
---|
110 | if (tymax < tmax) |
---|
111 | tmax = tymax; |
---|
112 | |
---|
113 | tzmin = (bounds[raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ(); |
---|
114 | tzmax = (bounds[1-raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ(); |
---|
115 | |
---|
116 | if ( (tmin > tzmax) || (tzmin > tmax) ) |
---|
117 | return false; |
---|
118 | if (tzmin > tmin) |
---|
119 | tmin = tzmin; |
---|
120 | if (tzmax < tmax) |
---|
121 | tmax = tzmax; |
---|
122 | return ( (tmin < lambda_max) && (tmax > lambda_min) ); |
---|
123 | } |
---|
124 | |
---|
125 | SIMD_FORCE_INLINE bool btRayAabb(const btVector3& rayFrom, |
---|
126 | const btVector3& rayTo, |
---|
127 | const btVector3& aabbMin, |
---|
128 | const btVector3& aabbMax, |
---|
129 | btScalar& param, btVector3& normal) |
---|
130 | { |
---|
131 | btVector3 aabbHalfExtent = (aabbMax-aabbMin)* btScalar(0.5); |
---|
132 | btVector3 aabbCenter = (aabbMax+aabbMin)* btScalar(0.5); |
---|
133 | btVector3 source = rayFrom - aabbCenter; |
---|
134 | btVector3 target = rayTo - aabbCenter; |
---|
135 | int sourceOutcode = btOutcode(source,aabbHalfExtent); |
---|
136 | int targetOutcode = btOutcode(target,aabbHalfExtent); |
---|
137 | if ((sourceOutcode & targetOutcode) == 0x0) |
---|
138 | { |
---|
139 | btScalar lambda_enter = btScalar(0.0); |
---|
140 | btScalar lambda_exit = param; |
---|
141 | btVector3 r = target - source; |
---|
142 | int i; |
---|
143 | btScalar normSign = 1; |
---|
144 | btVector3 hitNormal(0,0,0); |
---|
145 | int bit=1; |
---|
146 | |
---|
147 | for (int j=0;j<2;j++) |
---|
148 | { |
---|
149 | for (i = 0; i != 3; ++i) |
---|
150 | { |
---|
151 | if (sourceOutcode & bit) |
---|
152 | { |
---|
153 | btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i]; |
---|
154 | if (lambda_enter <= lambda) |
---|
155 | { |
---|
156 | lambda_enter = lambda; |
---|
157 | hitNormal.setValue(0,0,0); |
---|
158 | hitNormal[i] = normSign; |
---|
159 | } |
---|
160 | } |
---|
161 | else if (targetOutcode & bit) |
---|
162 | { |
---|
163 | btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i]; |
---|
164 | btSetMin(lambda_exit, lambda); |
---|
165 | } |
---|
166 | bit<<=1; |
---|
167 | } |
---|
168 | normSign = btScalar(-1.); |
---|
169 | } |
---|
170 | if (lambda_enter <= lambda_exit) |
---|
171 | { |
---|
172 | param = lambda_enter; |
---|
173 | normal = hitNormal; |
---|
174 | return true; |
---|
175 | } |
---|
176 | } |
---|
177 | return false; |
---|
178 | } |
---|
179 | |
---|
180 | |
---|
181 | |
---|
182 | SIMD_FORCE_INLINE void btTransformAabb(const btVector3& halfExtents, btScalar margin,const btTransform& t,btVector3& aabbMinOut,btVector3& aabbMaxOut) |
---|
183 | { |
---|
184 | btVector3 halfExtentsWithMargin = halfExtents+btVector3(margin,margin,margin); |
---|
185 | btMatrix3x3 abs_b = t.getBasis().absolute(); |
---|
186 | btVector3 center = t.getOrigin(); |
---|
187 | btVector3 extent = btVector3(abs_b[0].dot(halfExtentsWithMargin), |
---|
188 | abs_b[1].dot(halfExtentsWithMargin), |
---|
189 | abs_b[2].dot(halfExtentsWithMargin)); |
---|
190 | aabbMinOut = center - extent; |
---|
191 | aabbMaxOut = center + extent; |
---|
192 | } |
---|
193 | |
---|
194 | |
---|
195 | SIMD_FORCE_INLINE void btTransformAabb(const btVector3& localAabbMin,const btVector3& localAabbMax, btScalar margin,const btTransform& trans,btVector3& aabbMinOut,btVector3& aabbMaxOut) |
---|
196 | { |
---|
197 | btAssert(localAabbMin.getX() <= localAabbMax.getX()); |
---|
198 | btAssert(localAabbMin.getY() <= localAabbMax.getY()); |
---|
199 | btAssert(localAabbMin.getZ() <= localAabbMax.getZ()); |
---|
200 | btVector3 localHalfExtents = btScalar(0.5)*(localAabbMax-localAabbMin); |
---|
201 | localHalfExtents+=btVector3(margin,margin,margin); |
---|
202 | |
---|
203 | btVector3 localCenter = btScalar(0.5)*(localAabbMax+localAabbMin); |
---|
204 | btMatrix3x3 abs_b = trans.getBasis().absolute(); |
---|
205 | btVector3 center = trans(localCenter); |
---|
206 | btVector3 extent = btVector3(abs_b[0].dot(localHalfExtents), |
---|
207 | abs_b[1].dot(localHalfExtents), |
---|
208 | abs_b[2].dot(localHalfExtents)); |
---|
209 | aabbMinOut = center-extent; |
---|
210 | aabbMaxOut = center+extent; |
---|
211 | } |
---|
212 | |
---|
213 | #define USE_BANCHLESS 1 |
---|
214 | #ifdef USE_BANCHLESS |
---|
215 | //This block replaces the block below and uses no branches, and replaces the 8 bit return with a 32 bit return for improved performance (~3x on XBox 360) |
---|
216 | SIMD_FORCE_INLINE unsigned testQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2) |
---|
217 | { |
---|
218 | return static_cast<unsigned int>(btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0]) |
---|
219 | & (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2]) |
---|
220 | & (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])), |
---|
221 | 1, 0)); |
---|
222 | } |
---|
223 | #else |
---|
224 | SIMD_FORCE_INLINE bool testQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2) |
---|
225 | { |
---|
226 | bool overlap = true; |
---|
227 | overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap; |
---|
228 | overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap; |
---|
229 | overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap; |
---|
230 | return overlap; |
---|
231 | } |
---|
232 | #endif //USE_BANCHLESS |
---|
233 | |
---|
234 | #endif //BT_AABB_UTIL2 |
---|
235 | |
---|
236 | |
---|