1 | /* |
---|
2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
3 | |
---|
4 | This software is provided 'as-is', without any express or implied warranty. |
---|
5 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
6 | Permission is granted to anyone to use this software for any purpose, |
---|
7 | including commercial applications, and to alter it and redistribute it freely, |
---|
8 | subject to the following restrictions: |
---|
9 | |
---|
10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
12 | 3. This notice may not be removed or altered from any source distribution. |
---|
13 | */ |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | #ifndef BT_SIMD__QUATERNION_H_ |
---|
18 | #define BT_SIMD__QUATERNION_H_ |
---|
19 | |
---|
20 | |
---|
21 | #include "btVector3.h" |
---|
22 | #include "btQuadWord.h" |
---|
23 | |
---|
24 | /**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */ |
---|
25 | class btQuaternion : public btQuadWord { |
---|
26 | public: |
---|
27 | /**@brief No initialization constructor */ |
---|
28 | btQuaternion() {} |
---|
29 | |
---|
30 | // template <typename btScalar> |
---|
31 | // explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {} |
---|
32 | /**@brief Constructor from scalars */ |
---|
33 | btQuaternion(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w) |
---|
34 | : btQuadWord(x, y, z, w) |
---|
35 | {} |
---|
36 | /**@brief Axis angle Constructor |
---|
37 | * @param axis The axis which the rotation is around |
---|
38 | * @param angle The magnitude of the rotation around the angle (Radians) */ |
---|
39 | btQuaternion(const btVector3& axis, const btScalar& angle) |
---|
40 | { |
---|
41 | setRotation(axis, angle); |
---|
42 | } |
---|
43 | /**@brief Constructor from Euler angles |
---|
44 | * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z |
---|
45 | * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y |
---|
46 | * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */ |
---|
47 | btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) |
---|
48 | { |
---|
49 | #ifndef BT_EULER_DEFAULT_ZYX |
---|
50 | setEuler(yaw, pitch, roll); |
---|
51 | #else |
---|
52 | setEulerZYX(yaw, pitch, roll); |
---|
53 | #endif |
---|
54 | } |
---|
55 | /**@brief Set the rotation using axis angle notation |
---|
56 | * @param axis The axis around which to rotate |
---|
57 | * @param angle The magnitude of the rotation in Radians */ |
---|
58 | void setRotation(const btVector3& axis, const btScalar& angle) |
---|
59 | { |
---|
60 | btScalar d = axis.length(); |
---|
61 | btAssert(d != btScalar(0.0)); |
---|
62 | btScalar s = btSin(angle * btScalar(0.5)) / d; |
---|
63 | setValue(axis.x() * s, axis.y() * s, axis.z() * s, |
---|
64 | btCos(angle * btScalar(0.5))); |
---|
65 | } |
---|
66 | /**@brief Set the quaternion using Euler angles |
---|
67 | * @param yaw Angle around Y |
---|
68 | * @param pitch Angle around X |
---|
69 | * @param roll Angle around Z */ |
---|
70 | void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) |
---|
71 | { |
---|
72 | btScalar halfYaw = btScalar(yaw) * btScalar(0.5); |
---|
73 | btScalar halfPitch = btScalar(pitch) * btScalar(0.5); |
---|
74 | btScalar halfRoll = btScalar(roll) * btScalar(0.5); |
---|
75 | btScalar cosYaw = btCos(halfYaw); |
---|
76 | btScalar sinYaw = btSin(halfYaw); |
---|
77 | btScalar cosPitch = btCos(halfPitch); |
---|
78 | btScalar sinPitch = btSin(halfPitch); |
---|
79 | btScalar cosRoll = btCos(halfRoll); |
---|
80 | btScalar sinRoll = btSin(halfRoll); |
---|
81 | setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, |
---|
82 | cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, |
---|
83 | sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, |
---|
84 | cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); |
---|
85 | } |
---|
86 | /**@brief Set the quaternion using euler angles |
---|
87 | * @param yaw Angle around Z |
---|
88 | * @param pitch Angle around Y |
---|
89 | * @param roll Angle around X */ |
---|
90 | void setEulerZYX(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) |
---|
91 | { |
---|
92 | btScalar halfYaw = btScalar(yaw) * btScalar(0.5); |
---|
93 | btScalar halfPitch = btScalar(pitch) * btScalar(0.5); |
---|
94 | btScalar halfRoll = btScalar(roll) * btScalar(0.5); |
---|
95 | btScalar cosYaw = btCos(halfYaw); |
---|
96 | btScalar sinYaw = btSin(halfYaw); |
---|
97 | btScalar cosPitch = btCos(halfPitch); |
---|
98 | btScalar sinPitch = btSin(halfPitch); |
---|
99 | btScalar cosRoll = btCos(halfRoll); |
---|
100 | btScalar sinRoll = btSin(halfRoll); |
---|
101 | setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x |
---|
102 | cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y |
---|
103 | cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z |
---|
104 | cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx |
---|
105 | } |
---|
106 | /**@brief Add two quaternions |
---|
107 | * @param q The quaternion to add to this one */ |
---|
108 | SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q) |
---|
109 | { |
---|
110 | m_floats[0] += q.x(); m_floats[1] += q.y(); m_floats[2] += q.z(); m_floats[3] += q.m_floats[3]; |
---|
111 | return *this; |
---|
112 | } |
---|
113 | |
---|
114 | /**@brief Subtract out a quaternion |
---|
115 | * @param q The quaternion to subtract from this one */ |
---|
116 | btQuaternion& operator-=(const btQuaternion& q) |
---|
117 | { |
---|
118 | m_floats[0] -= q.x(); m_floats[1] -= q.y(); m_floats[2] -= q.z(); m_floats[3] -= q.m_floats[3]; |
---|
119 | return *this; |
---|
120 | } |
---|
121 | |
---|
122 | /**@brief Scale this quaternion |
---|
123 | * @param s The scalar to scale by */ |
---|
124 | btQuaternion& operator*=(const btScalar& s) |
---|
125 | { |
---|
126 | m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; m_floats[3] *= s; |
---|
127 | return *this; |
---|
128 | } |
---|
129 | |
---|
130 | /**@brief Multiply this quaternion by q on the right |
---|
131 | * @param q The other quaternion |
---|
132 | * Equivilant to this = this * q */ |
---|
133 | btQuaternion& operator*=(const btQuaternion& q) |
---|
134 | { |
---|
135 | setValue(m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(), |
---|
136 | m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(), |
---|
137 | m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(), |
---|
138 | m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z()); |
---|
139 | return *this; |
---|
140 | } |
---|
141 | /**@brief Return the dot product between this quaternion and another |
---|
142 | * @param q The other quaternion */ |
---|
143 | btScalar dot(const btQuaternion& q) const |
---|
144 | { |
---|
145 | return m_floats[0] * q.x() + m_floats[1] * q.y() + m_floats[2] * q.z() + m_floats[3] * q.m_floats[3]; |
---|
146 | } |
---|
147 | |
---|
148 | /**@brief Return the length squared of the quaternion */ |
---|
149 | btScalar length2() const |
---|
150 | { |
---|
151 | return dot(*this); |
---|
152 | } |
---|
153 | |
---|
154 | /**@brief Return the length of the quaternion */ |
---|
155 | btScalar length() const |
---|
156 | { |
---|
157 | return btSqrt(length2()); |
---|
158 | } |
---|
159 | |
---|
160 | /**@brief Normalize the quaternion |
---|
161 | * Such that x^2 + y^2 + z^2 +w^2 = 1 */ |
---|
162 | btQuaternion& normalize() |
---|
163 | { |
---|
164 | return *this /= length(); |
---|
165 | } |
---|
166 | |
---|
167 | /**@brief Return a scaled version of this quaternion |
---|
168 | * @param s The scale factor */ |
---|
169 | SIMD_FORCE_INLINE btQuaternion |
---|
170 | operator*(const btScalar& s) const |
---|
171 | { |
---|
172 | return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s); |
---|
173 | } |
---|
174 | |
---|
175 | |
---|
176 | /**@brief Return an inversely scaled versionof this quaternion |
---|
177 | * @param s The inverse scale factor */ |
---|
178 | btQuaternion operator/(const btScalar& s) const |
---|
179 | { |
---|
180 | btAssert(s != btScalar(0.0)); |
---|
181 | return *this * (btScalar(1.0) / s); |
---|
182 | } |
---|
183 | |
---|
184 | /**@brief Inversely scale this quaternion |
---|
185 | * @param s The scale factor */ |
---|
186 | btQuaternion& operator/=(const btScalar& s) |
---|
187 | { |
---|
188 | btAssert(s != btScalar(0.0)); |
---|
189 | return *this *= btScalar(1.0) / s; |
---|
190 | } |
---|
191 | |
---|
192 | /**@brief Return a normalized version of this quaternion */ |
---|
193 | btQuaternion normalized() const |
---|
194 | { |
---|
195 | return *this / length(); |
---|
196 | } |
---|
197 | /**@brief Return the angle between this quaternion and the other |
---|
198 | * @param q The other quaternion */ |
---|
199 | btScalar angle(const btQuaternion& q) const |
---|
200 | { |
---|
201 | btScalar s = btSqrt(length2() * q.length2()); |
---|
202 | btAssert(s != btScalar(0.0)); |
---|
203 | return btAcos(dot(q) / s); |
---|
204 | } |
---|
205 | /**@brief Return the angle of rotation represented by this quaternion */ |
---|
206 | btScalar getAngle() const |
---|
207 | { |
---|
208 | btScalar s = btScalar(2.) * btAcos(m_floats[3]); |
---|
209 | return s; |
---|
210 | } |
---|
211 | |
---|
212 | /**@brief Return the axis of the rotation represented by this quaternion */ |
---|
213 | btVector3 getAxis() const |
---|
214 | { |
---|
215 | btScalar s_squared = btScalar(1.) - btPow(m_floats[3], btScalar(2.)); |
---|
216 | if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero |
---|
217 | return btVector3(1.0, 0.0, 0.0); // Arbitrary |
---|
218 | btScalar s = btSqrt(s_squared); |
---|
219 | return btVector3(m_floats[0] / s, m_floats[1] / s, m_floats[2] / s); |
---|
220 | } |
---|
221 | |
---|
222 | /**@brief Return the inverse of this quaternion */ |
---|
223 | btQuaternion inverse() const |
---|
224 | { |
---|
225 | return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]); |
---|
226 | } |
---|
227 | |
---|
228 | /**@brief Return the sum of this quaternion and the other |
---|
229 | * @param q2 The other quaternion */ |
---|
230 | SIMD_FORCE_INLINE btQuaternion |
---|
231 | operator+(const btQuaternion& q2) const |
---|
232 | { |
---|
233 | const btQuaternion& q1 = *this; |
---|
234 | return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]); |
---|
235 | } |
---|
236 | |
---|
237 | /**@brief Return the difference between this quaternion and the other |
---|
238 | * @param q2 The other quaternion */ |
---|
239 | SIMD_FORCE_INLINE btQuaternion |
---|
240 | operator-(const btQuaternion& q2) const |
---|
241 | { |
---|
242 | const btQuaternion& q1 = *this; |
---|
243 | return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]); |
---|
244 | } |
---|
245 | |
---|
246 | /**@brief Return the negative of this quaternion |
---|
247 | * This simply negates each element */ |
---|
248 | SIMD_FORCE_INLINE btQuaternion operator-() const |
---|
249 | { |
---|
250 | const btQuaternion& q2 = *this; |
---|
251 | return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]); |
---|
252 | } |
---|
253 | /**@todo document this and it's use */ |
---|
254 | SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const |
---|
255 | { |
---|
256 | btQuaternion diff,sum; |
---|
257 | diff = *this - qd; |
---|
258 | sum = *this + qd; |
---|
259 | if( diff.dot(diff) > sum.dot(sum) ) |
---|
260 | return qd; |
---|
261 | return (-qd); |
---|
262 | } |
---|
263 | |
---|
264 | /**@todo document this and it's use */ |
---|
265 | SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const |
---|
266 | { |
---|
267 | btQuaternion diff,sum; |
---|
268 | diff = *this - qd; |
---|
269 | sum = *this + qd; |
---|
270 | if( diff.dot(diff) < sum.dot(sum) ) |
---|
271 | return qd; |
---|
272 | return (-qd); |
---|
273 | } |
---|
274 | |
---|
275 | |
---|
276 | /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion |
---|
277 | * @param q The other quaternion to interpolate with |
---|
278 | * @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q. |
---|
279 | * Slerp interpolates assuming constant velocity. */ |
---|
280 | btQuaternion slerp(const btQuaternion& q, const btScalar& t) const |
---|
281 | { |
---|
282 | btScalar theta = angle(q); |
---|
283 | if (theta != btScalar(0.0)) |
---|
284 | { |
---|
285 | btScalar d = btScalar(1.0) / btSin(theta); |
---|
286 | btScalar s0 = btSin((btScalar(1.0) - t) * theta); |
---|
287 | btScalar s1 = btSin(t * theta); |
---|
288 | if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp |
---|
289 | return btQuaternion((m_floats[0] * s0 + -q.x() * s1) * d, |
---|
290 | (m_floats[1] * s0 + -q.y() * s1) * d, |
---|
291 | (m_floats[2] * s0 + -q.z() * s1) * d, |
---|
292 | (m_floats[3] * s0 + -q.m_floats[3] * s1) * d); |
---|
293 | else |
---|
294 | return btQuaternion((m_floats[0] * s0 + q.x() * s1) * d, |
---|
295 | (m_floats[1] * s0 + q.y() * s1) * d, |
---|
296 | (m_floats[2] * s0 + q.z() * s1) * d, |
---|
297 | (m_floats[3] * s0 + q.m_floats[3] * s1) * d); |
---|
298 | |
---|
299 | } |
---|
300 | else |
---|
301 | { |
---|
302 | return *this; |
---|
303 | } |
---|
304 | } |
---|
305 | |
---|
306 | static const btQuaternion& getIdentity() |
---|
307 | { |
---|
308 | static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.)); |
---|
309 | return identityQuat; |
---|
310 | } |
---|
311 | |
---|
312 | SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; } |
---|
313 | |
---|
314 | |
---|
315 | }; |
---|
316 | |
---|
317 | |
---|
318 | /**@brief Return the negative of a quaternion */ |
---|
319 | SIMD_FORCE_INLINE btQuaternion |
---|
320 | operator-(const btQuaternion& q) |
---|
321 | { |
---|
322 | return btQuaternion(-q.x(), -q.y(), -q.z(), -q.w()); |
---|
323 | } |
---|
324 | |
---|
325 | |
---|
326 | |
---|
327 | /**@brief Return the product of two quaternions */ |
---|
328 | SIMD_FORCE_INLINE btQuaternion |
---|
329 | operator*(const btQuaternion& q1, const btQuaternion& q2) { |
---|
330 | return btQuaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(), |
---|
331 | q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(), |
---|
332 | q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(), |
---|
333 | q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); |
---|
334 | } |
---|
335 | |
---|
336 | SIMD_FORCE_INLINE btQuaternion |
---|
337 | operator*(const btQuaternion& q, const btVector3& w) |
---|
338 | { |
---|
339 | return btQuaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(), |
---|
340 | q.w() * w.y() + q.z() * w.x() - q.x() * w.z(), |
---|
341 | q.w() * w.z() + q.x() * w.y() - q.y() * w.x(), |
---|
342 | -q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); |
---|
343 | } |
---|
344 | |
---|
345 | SIMD_FORCE_INLINE btQuaternion |
---|
346 | operator*(const btVector3& w, const btQuaternion& q) |
---|
347 | { |
---|
348 | return btQuaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(), |
---|
349 | w.y() * q.w() + w.z() * q.x() - w.x() * q.z(), |
---|
350 | w.z() * q.w() + w.x() * q.y() - w.y() * q.x(), |
---|
351 | -w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); |
---|
352 | } |
---|
353 | |
---|
354 | /**@brief Calculate the dot product between two quaternions */ |
---|
355 | SIMD_FORCE_INLINE btScalar |
---|
356 | dot(const btQuaternion& q1, const btQuaternion& q2) |
---|
357 | { |
---|
358 | return q1.dot(q2); |
---|
359 | } |
---|
360 | |
---|
361 | |
---|
362 | /**@brief Return the length of a quaternion */ |
---|
363 | SIMD_FORCE_INLINE btScalar |
---|
364 | length(const btQuaternion& q) |
---|
365 | { |
---|
366 | return q.length(); |
---|
367 | } |
---|
368 | |
---|
369 | /**@brief Return the angle between two quaternions*/ |
---|
370 | SIMD_FORCE_INLINE btScalar |
---|
371 | angle(const btQuaternion& q1, const btQuaternion& q2) |
---|
372 | { |
---|
373 | return q1.angle(q2); |
---|
374 | } |
---|
375 | |
---|
376 | /**@brief Return the inverse of a quaternion*/ |
---|
377 | SIMD_FORCE_INLINE btQuaternion |
---|
378 | inverse(const btQuaternion& q) |
---|
379 | { |
---|
380 | return q.inverse(); |
---|
381 | } |
---|
382 | |
---|
383 | /**@brief Return the result of spherical linear interpolation betwen two quaternions |
---|
384 | * @param q1 The first quaternion |
---|
385 | * @param q2 The second quaternion |
---|
386 | * @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2 |
---|
387 | * Slerp assumes constant velocity between positions. */ |
---|
388 | SIMD_FORCE_INLINE btQuaternion |
---|
389 | slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t) |
---|
390 | { |
---|
391 | return q1.slerp(q2, t); |
---|
392 | } |
---|
393 | |
---|
394 | SIMD_FORCE_INLINE btVector3 |
---|
395 | quatRotate(const btQuaternion& rotation, const btVector3& v) |
---|
396 | { |
---|
397 | btQuaternion q = rotation * v; |
---|
398 | q *= rotation.inverse(); |
---|
399 | return btVector3(q.getX(),q.getY(),q.getZ()); |
---|
400 | } |
---|
401 | |
---|
402 | SIMD_FORCE_INLINE btQuaternion |
---|
403 | shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized |
---|
404 | { |
---|
405 | btVector3 c = v0.cross(v1); |
---|
406 | btScalar d = v0.dot(v1); |
---|
407 | |
---|
408 | if (d < -1.0 + SIMD_EPSILON) |
---|
409 | { |
---|
410 | btVector3 n,unused; |
---|
411 | btPlaneSpace1(v0,n,unused); |
---|
412 | return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0 |
---|
413 | } |
---|
414 | |
---|
415 | btScalar s = btSqrt((1.0f + d) * 2.0f); |
---|
416 | btScalar rs = 1.0f / s; |
---|
417 | |
---|
418 | return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f); |
---|
419 | } |
---|
420 | |
---|
421 | SIMD_FORCE_INLINE btQuaternion |
---|
422 | shortestArcQuatNormalize2(btVector3& v0,btVector3& v1) |
---|
423 | { |
---|
424 | v0.normalize(); |
---|
425 | v1.normalize(); |
---|
426 | return shortestArcQuat(v0,v1); |
---|
427 | } |
---|
428 | |
---|
429 | #endif //BT_SIMD__QUATERNION_H_ |
---|
430 | |
---|
431 | |
---|
432 | |
---|
433 | |
---|