[1963] | 1 | /* |
---|
| 2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 3 | |
---|
| 4 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 5 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 6 | Permission is granted to anyone to use this software for any purpose, |
---|
| 7 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 8 | subject to the following restrictions: |
---|
| 9 | |
---|
| 10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 12 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | #ifndef SIMD_TRANSFORM_UTIL_H |
---|
| 17 | #define SIMD_TRANSFORM_UTIL_H |
---|
| 18 | |
---|
| 19 | #include "btTransform.h" |
---|
| 20 | #define ANGULAR_MOTION_THRESHOLD btScalar(0.5)*SIMD_HALF_PI |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | #define SIMDSQRT12 btScalar(0.7071067811865475244008443621048490) |
---|
| 25 | |
---|
| 26 | #define btRecipSqrt(x) ((btScalar)(btScalar(1.0)/btSqrt(btScalar(x)))) /* reciprocal square root */ |
---|
| 27 | |
---|
| 28 | SIMD_FORCE_INLINE btVector3 btAabbSupport(const btVector3& halfExtents,const btVector3& supportDir) |
---|
| 29 | { |
---|
| 30 | return btVector3(supportDir.x() < btScalar(0.0) ? -halfExtents.x() : halfExtents.x(), |
---|
| 31 | supportDir.y() < btScalar(0.0) ? -halfExtents.y() : halfExtents.y(), |
---|
| 32 | supportDir.z() < btScalar(0.0) ? -halfExtents.z() : halfExtents.z()); |
---|
| 33 | } |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | SIMD_FORCE_INLINE void btPlaneSpace1 (const btVector3& n, btVector3& p, btVector3& q) |
---|
| 37 | { |
---|
| 38 | if (btFabs(n.z()) > SIMDSQRT12) { |
---|
| 39 | // choose p in y-z plane |
---|
| 40 | btScalar a = n[1]*n[1] + n[2]*n[2]; |
---|
| 41 | btScalar k = btRecipSqrt (a); |
---|
| 42 | p.setValue(0,-n[2]*k,n[1]*k); |
---|
| 43 | // set q = n x p |
---|
| 44 | q.setValue(a*k,-n[0]*p[2],n[0]*p[1]); |
---|
| 45 | } |
---|
| 46 | else { |
---|
| 47 | // choose p in x-y plane |
---|
| 48 | btScalar a = n.x()*n.x() + n.y()*n.y(); |
---|
| 49 | btScalar k = btRecipSqrt (a); |
---|
| 50 | p.setValue(-n.y()*k,n.x()*k,0); |
---|
| 51 | // set q = n x p |
---|
| 52 | q.setValue(-n.z()*p.y(),n.z()*p.x(),a*k); |
---|
| 53 | } |
---|
| 54 | } |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | /// Utils related to temporal transforms |
---|
| 59 | class btTransformUtil |
---|
| 60 | { |
---|
| 61 | |
---|
| 62 | public: |
---|
| 63 | |
---|
| 64 | static void integrateTransform(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep,btTransform& predictedTransform) |
---|
| 65 | { |
---|
| 66 | predictedTransform.setOrigin(curTrans.getOrigin() + linvel * timeStep); |
---|
| 67 | // #define QUATERNION_DERIVATIVE |
---|
| 68 | #ifdef QUATERNION_DERIVATIVE |
---|
| 69 | btQuaternion predictedOrn = curTrans.getRotation(); |
---|
| 70 | predictedOrn += (angvel * predictedOrn) * (timeStep * btScalar(0.5)); |
---|
| 71 | predictedOrn.normalize(); |
---|
| 72 | #else |
---|
| 73 | //Exponential map |
---|
| 74 | //google for "Practical Parameterization of Rotations Using the Exponential Map", F. Sebastian Grassia |
---|
| 75 | |
---|
| 76 | btVector3 axis; |
---|
| 77 | btScalar fAngle = angvel.length(); |
---|
| 78 | //limit the angular motion |
---|
| 79 | if (fAngle*timeStep > ANGULAR_MOTION_THRESHOLD) |
---|
| 80 | { |
---|
| 81 | fAngle = ANGULAR_MOTION_THRESHOLD / timeStep; |
---|
| 82 | } |
---|
| 83 | |
---|
| 84 | if ( fAngle < btScalar(0.001) ) |
---|
| 85 | { |
---|
| 86 | // use Taylor's expansions of sync function |
---|
| 87 | axis = angvel*( btScalar(0.5)*timeStep-(timeStep*timeStep*timeStep)*(btScalar(0.020833333333))*fAngle*fAngle ); |
---|
| 88 | } |
---|
| 89 | else |
---|
| 90 | { |
---|
| 91 | // sync(fAngle) = sin(c*fAngle)/t |
---|
| 92 | axis = angvel*( btSin(btScalar(0.5)*fAngle*timeStep)/fAngle ); |
---|
| 93 | } |
---|
| 94 | btQuaternion dorn (axis.x(),axis.y(),axis.z(),btCos( fAngle*timeStep*btScalar(0.5) )); |
---|
| 95 | btQuaternion orn0 = curTrans.getRotation(); |
---|
| 96 | |
---|
| 97 | btQuaternion predictedOrn = dorn * orn0; |
---|
| 98 | predictedOrn.normalize(); |
---|
| 99 | #endif |
---|
| 100 | predictedTransform.setRotation(predictedOrn); |
---|
| 101 | } |
---|
| 102 | |
---|
[2430] | 103 | static void calculateVelocityQuaternion(const btVector3& pos0,const btVector3& pos1,const btQuaternion& orn0,const btQuaternion& orn1,btScalar timeStep,btVector3& linVel,btVector3& angVel) |
---|
| 104 | { |
---|
| 105 | linVel = (pos1 - pos0) / timeStep; |
---|
| 106 | btVector3 axis; |
---|
| 107 | btScalar angle; |
---|
| 108 | if (orn0 != orn1) |
---|
| 109 | { |
---|
| 110 | calculateDiffAxisAngleQuaternion(orn0,orn1,axis,angle); |
---|
| 111 | angVel = axis * angle / timeStep; |
---|
| 112 | } else |
---|
| 113 | { |
---|
| 114 | angVel.setValue(0,0,0); |
---|
| 115 | } |
---|
| 116 | } |
---|
| 117 | |
---|
| 118 | static void calculateDiffAxisAngleQuaternion(const btQuaternion& orn0,const btQuaternion& orn1a,btVector3& axis,btScalar& angle) |
---|
| 119 | { |
---|
| 120 | btQuaternion orn1 = orn0.farthest(orn1a); |
---|
| 121 | btQuaternion dorn = orn1 * orn0.inverse(); |
---|
| 122 | ///floating point inaccuracy can lead to w component > 1..., which breaks |
---|
| 123 | dorn.normalize(); |
---|
| 124 | angle = dorn.getAngle(); |
---|
| 125 | axis = btVector3(dorn.x(),dorn.y(),dorn.z()); |
---|
| 126 | axis[3] = btScalar(0.); |
---|
| 127 | //check for axis length |
---|
| 128 | btScalar len = axis.length2(); |
---|
| 129 | if (len < SIMD_EPSILON*SIMD_EPSILON) |
---|
| 130 | axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.)); |
---|
| 131 | else |
---|
| 132 | axis /= btSqrt(len); |
---|
| 133 | } |
---|
| 134 | |
---|
[1963] | 135 | static void calculateVelocity(const btTransform& transform0,const btTransform& transform1,btScalar timeStep,btVector3& linVel,btVector3& angVel) |
---|
| 136 | { |
---|
| 137 | linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep; |
---|
| 138 | btVector3 axis; |
---|
| 139 | btScalar angle; |
---|
| 140 | calculateDiffAxisAngle(transform0,transform1,axis,angle); |
---|
| 141 | angVel = axis * angle / timeStep; |
---|
| 142 | } |
---|
| 143 | |
---|
| 144 | static void calculateDiffAxisAngle(const btTransform& transform0,const btTransform& transform1,btVector3& axis,btScalar& angle) |
---|
| 145 | { |
---|
| 146 | btMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse(); |
---|
| 147 | btQuaternion dorn; |
---|
| 148 | dmat.getRotation(dorn); |
---|
[2430] | 149 | |
---|
[1963] | 150 | ///floating point inaccuracy can lead to w component > 1..., which breaks |
---|
| 151 | dorn.normalize(); |
---|
| 152 | |
---|
| 153 | angle = dorn.getAngle(); |
---|
| 154 | axis = btVector3(dorn.x(),dorn.y(),dorn.z()); |
---|
| 155 | axis[3] = btScalar(0.); |
---|
| 156 | //check for axis length |
---|
| 157 | btScalar len = axis.length2(); |
---|
| 158 | if (len < SIMD_EPSILON*SIMD_EPSILON) |
---|
| 159 | axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.)); |
---|
| 160 | else |
---|
| 161 | axis /= btSqrt(len); |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | }; |
---|
| 165 | |
---|
[2430] | 166 | |
---|
| 167 | ///The btConvexSeparatingDistanceUtil can help speed up convex collision detection |
---|
| 168 | ///by conservatively updating a cached separating distance/vector instead of re-calculating the closest distance |
---|
| 169 | class btConvexSeparatingDistanceUtil |
---|
| 170 | { |
---|
| 171 | btQuaternion m_ornA; |
---|
| 172 | btQuaternion m_ornB; |
---|
| 173 | btVector3 m_posA; |
---|
| 174 | btVector3 m_posB; |
---|
| 175 | |
---|
| 176 | btVector3 m_separatingNormal; |
---|
| 177 | |
---|
| 178 | btScalar m_boundingRadiusA; |
---|
| 179 | btScalar m_boundingRadiusB; |
---|
| 180 | btScalar m_separatingDistance; |
---|
| 181 | |
---|
| 182 | public: |
---|
| 183 | |
---|
| 184 | btConvexSeparatingDistanceUtil(btScalar boundingRadiusA,btScalar boundingRadiusB) |
---|
| 185 | :m_boundingRadiusA(boundingRadiusA), |
---|
| 186 | m_boundingRadiusB(boundingRadiusB), |
---|
| 187 | m_separatingDistance(0.f) |
---|
| 188 | { |
---|
| 189 | } |
---|
| 190 | |
---|
| 191 | btScalar getConservativeSeparatingDistance() |
---|
| 192 | { |
---|
| 193 | return m_separatingDistance; |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | void updateSeparatingDistance(const btTransform& transA,const btTransform& transB) |
---|
| 197 | { |
---|
| 198 | const btVector3& toPosA = transA.getOrigin(); |
---|
| 199 | const btVector3& toPosB = transB.getOrigin(); |
---|
| 200 | btQuaternion toOrnA = transA.getRotation(); |
---|
| 201 | btQuaternion toOrnB = transB.getRotation(); |
---|
| 202 | |
---|
| 203 | if (m_separatingDistance>0.f) |
---|
| 204 | { |
---|
| 205 | |
---|
| 206 | |
---|
| 207 | btVector3 linVelA,angVelA,linVelB,angVelB; |
---|
| 208 | btTransformUtil::calculateVelocityQuaternion(m_posA,toPosA,m_ornA,toOrnA,btScalar(1.),linVelA,angVelA); |
---|
| 209 | btTransformUtil::calculateVelocityQuaternion(m_posB,toPosB,m_ornB,toOrnB,btScalar(1.),linVelB,angVelB); |
---|
| 210 | btScalar maxAngularProjectedVelocity = angVelA.length() * m_boundingRadiusA + angVelB.length() * m_boundingRadiusB; |
---|
| 211 | btVector3 relLinVel = (linVelB-linVelA); |
---|
| 212 | btScalar relLinVelocLength = (linVelB-linVelA).dot(m_separatingNormal); |
---|
| 213 | if (relLinVelocLength<0.f) |
---|
| 214 | { |
---|
| 215 | relLinVelocLength = 0.f; |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | btScalar projectedMotion = maxAngularProjectedVelocity +relLinVelocLength; |
---|
| 219 | m_separatingDistance -= projectedMotion; |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | m_posA = toPosA; |
---|
| 223 | m_posB = toPosB; |
---|
| 224 | m_ornA = toOrnA; |
---|
| 225 | m_ornB = toOrnB; |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | void initSeparatingDistance(const btVector3& separatingVector,btScalar separatingDistance,const btTransform& transA,const btTransform& transB) |
---|
| 229 | { |
---|
| 230 | m_separatingNormal = separatingVector; |
---|
| 231 | m_separatingDistance = separatingDistance; |
---|
| 232 | |
---|
| 233 | const btVector3& toPosA = transA.getOrigin(); |
---|
| 234 | const btVector3& toPosB = transB.getOrigin(); |
---|
| 235 | btQuaternion toOrnA = transA.getRotation(); |
---|
| 236 | btQuaternion toOrnB = transB.getRotation(); |
---|
| 237 | m_posA = toPosA; |
---|
| 238 | m_posB = toPosB; |
---|
| 239 | m_ornA = toOrnA; |
---|
| 240 | m_ornB = toOrnB; |
---|
| 241 | } |
---|
| 242 | |
---|
| 243 | }; |
---|
| 244 | |
---|
| 245 | |
---|
[1963] | 246 | #endif //SIMD_TRANSFORM_UTIL_H |
---|
| 247 | |
---|