1 | /* |
---|
2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
3 | |
---|
4 | This software is provided 'as-is', without any express or implied warranty. |
---|
5 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
6 | Permission is granted to anyone to use this software for any purpose, |
---|
7 | including commercial applications, and to alter it and redistribute it freely, |
---|
8 | subject to the following restrictions: |
---|
9 | |
---|
10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
12 | 3. This notice may not be removed or altered from any source distribution. |
---|
13 | */ |
---|
14 | |
---|
15 | |
---|
16 | #ifndef SIMD_TRANSFORM_UTIL_H |
---|
17 | #define SIMD_TRANSFORM_UTIL_H |
---|
18 | |
---|
19 | #include "btTransform.h" |
---|
20 | #define ANGULAR_MOTION_THRESHOLD btScalar(0.5)*SIMD_HALF_PI |
---|
21 | |
---|
22 | |
---|
23 | |
---|
24 | #define SIMDSQRT12 btScalar(0.7071067811865475244008443621048490) |
---|
25 | |
---|
26 | #define btRecipSqrt(x) ((btScalar)(btScalar(1.0)/btSqrt(btScalar(x)))) /* reciprocal square root */ |
---|
27 | |
---|
28 | SIMD_FORCE_INLINE btVector3 btAabbSupport(const btVector3& halfExtents,const btVector3& supportDir) |
---|
29 | { |
---|
30 | return btVector3(supportDir.x() < btScalar(0.0) ? -halfExtents.x() : halfExtents.x(), |
---|
31 | supportDir.y() < btScalar(0.0) ? -halfExtents.y() : halfExtents.y(), |
---|
32 | supportDir.z() < btScalar(0.0) ? -halfExtents.z() : halfExtents.z()); |
---|
33 | } |
---|
34 | |
---|
35 | |
---|
36 | SIMD_FORCE_INLINE void btPlaneSpace1 (const btVector3& n, btVector3& p, btVector3& q) |
---|
37 | { |
---|
38 | if (btFabs(n.z()) > SIMDSQRT12) { |
---|
39 | // choose p in y-z plane |
---|
40 | btScalar a = n[1]*n[1] + n[2]*n[2]; |
---|
41 | btScalar k = btRecipSqrt (a); |
---|
42 | p.setValue(0,-n[2]*k,n[1]*k); |
---|
43 | // set q = n x p |
---|
44 | q.setValue(a*k,-n[0]*p[2],n[0]*p[1]); |
---|
45 | } |
---|
46 | else { |
---|
47 | // choose p in x-y plane |
---|
48 | btScalar a = n.x()*n.x() + n.y()*n.y(); |
---|
49 | btScalar k = btRecipSqrt (a); |
---|
50 | p.setValue(-n.y()*k,n.x()*k,0); |
---|
51 | // set q = n x p |
---|
52 | q.setValue(-n.z()*p.y(),n.z()*p.x(),a*k); |
---|
53 | } |
---|
54 | } |
---|
55 | |
---|
56 | |
---|
57 | |
---|
58 | /// Utils related to temporal transforms |
---|
59 | class btTransformUtil |
---|
60 | { |
---|
61 | |
---|
62 | public: |
---|
63 | |
---|
64 | static void integrateTransform(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep,btTransform& predictedTransform) |
---|
65 | { |
---|
66 | predictedTransform.setOrigin(curTrans.getOrigin() + linvel * timeStep); |
---|
67 | // #define QUATERNION_DERIVATIVE |
---|
68 | #ifdef QUATERNION_DERIVATIVE |
---|
69 | btQuaternion predictedOrn = curTrans.getRotation(); |
---|
70 | predictedOrn += (angvel * predictedOrn) * (timeStep * btScalar(0.5)); |
---|
71 | predictedOrn.normalize(); |
---|
72 | #else |
---|
73 | //Exponential map |
---|
74 | //google for "Practical Parameterization of Rotations Using the Exponential Map", F. Sebastian Grassia |
---|
75 | |
---|
76 | btVector3 axis; |
---|
77 | btScalar fAngle = angvel.length(); |
---|
78 | //limit the angular motion |
---|
79 | if (fAngle*timeStep > ANGULAR_MOTION_THRESHOLD) |
---|
80 | { |
---|
81 | fAngle = ANGULAR_MOTION_THRESHOLD / timeStep; |
---|
82 | } |
---|
83 | |
---|
84 | if ( fAngle < btScalar(0.001) ) |
---|
85 | { |
---|
86 | // use Taylor's expansions of sync function |
---|
87 | axis = angvel*( btScalar(0.5)*timeStep-(timeStep*timeStep*timeStep)*(btScalar(0.020833333333))*fAngle*fAngle ); |
---|
88 | } |
---|
89 | else |
---|
90 | { |
---|
91 | // sync(fAngle) = sin(c*fAngle)/t |
---|
92 | axis = angvel*( btSin(btScalar(0.5)*fAngle*timeStep)/fAngle ); |
---|
93 | } |
---|
94 | btQuaternion dorn (axis.x(),axis.y(),axis.z(),btCos( fAngle*timeStep*btScalar(0.5) )); |
---|
95 | btQuaternion orn0 = curTrans.getRotation(); |
---|
96 | |
---|
97 | btQuaternion predictedOrn = dorn * orn0; |
---|
98 | predictedOrn.normalize(); |
---|
99 | #endif |
---|
100 | predictedTransform.setRotation(predictedOrn); |
---|
101 | } |
---|
102 | |
---|
103 | static void calculateVelocityQuaternion(const btVector3& pos0,const btVector3& pos1,const btQuaternion& orn0,const btQuaternion& orn1,btScalar timeStep,btVector3& linVel,btVector3& angVel) |
---|
104 | { |
---|
105 | linVel = (pos1 - pos0) / timeStep; |
---|
106 | btVector3 axis; |
---|
107 | btScalar angle; |
---|
108 | if (orn0 != orn1) |
---|
109 | { |
---|
110 | calculateDiffAxisAngleQuaternion(orn0,orn1,axis,angle); |
---|
111 | angVel = axis * angle / timeStep; |
---|
112 | } else |
---|
113 | { |
---|
114 | angVel.setValue(0,0,0); |
---|
115 | } |
---|
116 | } |
---|
117 | |
---|
118 | static void calculateDiffAxisAngleQuaternion(const btQuaternion& orn0,const btQuaternion& orn1a,btVector3& axis,btScalar& angle) |
---|
119 | { |
---|
120 | btQuaternion orn1 = orn0.farthest(orn1a); |
---|
121 | btQuaternion dorn = orn1 * orn0.inverse(); |
---|
122 | ///floating point inaccuracy can lead to w component > 1..., which breaks |
---|
123 | dorn.normalize(); |
---|
124 | angle = dorn.getAngle(); |
---|
125 | axis = btVector3(dorn.x(),dorn.y(),dorn.z()); |
---|
126 | axis[3] = btScalar(0.); |
---|
127 | //check for axis length |
---|
128 | btScalar len = axis.length2(); |
---|
129 | if (len < SIMD_EPSILON*SIMD_EPSILON) |
---|
130 | axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.)); |
---|
131 | else |
---|
132 | axis /= btSqrt(len); |
---|
133 | } |
---|
134 | |
---|
135 | static void calculateVelocity(const btTransform& transform0,const btTransform& transform1,btScalar timeStep,btVector3& linVel,btVector3& angVel) |
---|
136 | { |
---|
137 | linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep; |
---|
138 | btVector3 axis; |
---|
139 | btScalar angle; |
---|
140 | calculateDiffAxisAngle(transform0,transform1,axis,angle); |
---|
141 | angVel = axis * angle / timeStep; |
---|
142 | } |
---|
143 | |
---|
144 | static void calculateDiffAxisAngle(const btTransform& transform0,const btTransform& transform1,btVector3& axis,btScalar& angle) |
---|
145 | { |
---|
146 | btMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse(); |
---|
147 | btQuaternion dorn; |
---|
148 | dmat.getRotation(dorn); |
---|
149 | |
---|
150 | ///floating point inaccuracy can lead to w component > 1..., which breaks |
---|
151 | dorn.normalize(); |
---|
152 | |
---|
153 | angle = dorn.getAngle(); |
---|
154 | axis = btVector3(dorn.x(),dorn.y(),dorn.z()); |
---|
155 | axis[3] = btScalar(0.); |
---|
156 | //check for axis length |
---|
157 | btScalar len = axis.length2(); |
---|
158 | if (len < SIMD_EPSILON*SIMD_EPSILON) |
---|
159 | axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.)); |
---|
160 | else |
---|
161 | axis /= btSqrt(len); |
---|
162 | } |
---|
163 | |
---|
164 | }; |
---|
165 | |
---|
166 | |
---|
167 | ///The btConvexSeparatingDistanceUtil can help speed up convex collision detection |
---|
168 | ///by conservatively updating a cached separating distance/vector instead of re-calculating the closest distance |
---|
169 | class btConvexSeparatingDistanceUtil |
---|
170 | { |
---|
171 | btQuaternion m_ornA; |
---|
172 | btQuaternion m_ornB; |
---|
173 | btVector3 m_posA; |
---|
174 | btVector3 m_posB; |
---|
175 | |
---|
176 | btVector3 m_separatingNormal; |
---|
177 | |
---|
178 | btScalar m_boundingRadiusA; |
---|
179 | btScalar m_boundingRadiusB; |
---|
180 | btScalar m_separatingDistance; |
---|
181 | |
---|
182 | public: |
---|
183 | |
---|
184 | btConvexSeparatingDistanceUtil(btScalar boundingRadiusA,btScalar boundingRadiusB) |
---|
185 | :m_boundingRadiusA(boundingRadiusA), |
---|
186 | m_boundingRadiusB(boundingRadiusB), |
---|
187 | m_separatingDistance(0.f) |
---|
188 | { |
---|
189 | } |
---|
190 | |
---|
191 | btScalar getConservativeSeparatingDistance() |
---|
192 | { |
---|
193 | return m_separatingDistance; |
---|
194 | } |
---|
195 | |
---|
196 | void updateSeparatingDistance(const btTransform& transA,const btTransform& transB) |
---|
197 | { |
---|
198 | const btVector3& toPosA = transA.getOrigin(); |
---|
199 | const btVector3& toPosB = transB.getOrigin(); |
---|
200 | btQuaternion toOrnA = transA.getRotation(); |
---|
201 | btQuaternion toOrnB = transB.getRotation(); |
---|
202 | |
---|
203 | if (m_separatingDistance>0.f) |
---|
204 | { |
---|
205 | |
---|
206 | |
---|
207 | btVector3 linVelA,angVelA,linVelB,angVelB; |
---|
208 | btTransformUtil::calculateVelocityQuaternion(m_posA,toPosA,m_ornA,toOrnA,btScalar(1.),linVelA,angVelA); |
---|
209 | btTransformUtil::calculateVelocityQuaternion(m_posB,toPosB,m_ornB,toOrnB,btScalar(1.),linVelB,angVelB); |
---|
210 | btScalar maxAngularProjectedVelocity = angVelA.length() * m_boundingRadiusA + angVelB.length() * m_boundingRadiusB; |
---|
211 | btVector3 relLinVel = (linVelB-linVelA); |
---|
212 | btScalar relLinVelocLength = (linVelB-linVelA).dot(m_separatingNormal); |
---|
213 | if (relLinVelocLength<0.f) |
---|
214 | { |
---|
215 | relLinVelocLength = 0.f; |
---|
216 | } |
---|
217 | |
---|
218 | btScalar projectedMotion = maxAngularProjectedVelocity +relLinVelocLength; |
---|
219 | m_separatingDistance -= projectedMotion; |
---|
220 | } |
---|
221 | |
---|
222 | m_posA = toPosA; |
---|
223 | m_posB = toPosB; |
---|
224 | m_ornA = toOrnA; |
---|
225 | m_ornB = toOrnB; |
---|
226 | } |
---|
227 | |
---|
228 | void initSeparatingDistance(const btVector3& separatingVector,btScalar separatingDistance,const btTransform& transA,const btTransform& transB) |
---|
229 | { |
---|
230 | m_separatingNormal = separatingVector; |
---|
231 | m_separatingDistance = separatingDistance; |
---|
232 | |
---|
233 | const btVector3& toPosA = transA.getOrigin(); |
---|
234 | const btVector3& toPosB = transB.getOrigin(); |
---|
235 | btQuaternion toOrnA = transA.getRotation(); |
---|
236 | btQuaternion toOrnB = transB.getRotation(); |
---|
237 | m_posA = toPosA; |
---|
238 | m_posB = toPosB; |
---|
239 | m_ornA = toOrnA; |
---|
240 | m_ornB = toOrnB; |
---|
241 | } |
---|
242 | |
---|
243 | }; |
---|
244 | |
---|
245 | |
---|
246 | #endif //SIMD_TRANSFORM_UTIL_H |
---|
247 | |
---|