Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: downloads/OgreMain/include/OgrePass.h @ 3

Last change on this file since 3 was 3, checked in by anonymous, 17 years ago

=update

File size: 61.6 KB
RevLine 
[3]1/*
2-----------------------------------------------------------------------------
3This source file is part of OGRE
4(Object-oriented Graphics Rendering Engine)
5For the latest info, see http://www.ogre3d.org
6
7Copyright (c) 2000-2006 Torus Knot Software Ltd
8Also see acknowledgements in Readme.html
9
10This program is free software; you can redistribute it and/or modify it under
11the terms of the GNU Lesser General Public License as published by the Free Software
12Foundation; either version 2 of the License, or (at your option) any later
13version.
14
15This program is distributed in the hope that it will be useful, but WITHOUT
16ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
18
19You should have received a copy of the GNU Lesser General Public License along with
20this program; if not, write to the Free Software Foundation, Inc., 59 Temple
21Place - Suite 330, Boston, MA 02111-1307, USA, or go to
22http://www.gnu.org/copyleft/lesser.txt.
23
24You may alternatively use this source under the terms of a specific version of
25the OGRE Unrestricted License provided you have obtained such a license from
26Torus Knot Software Ltd.
27-----------------------------------------------------------------------------
28*/
29#ifndef __Pass_H__
30#define __Pass_H__
31
32#include "OgrePrerequisites.h"
33#include "OgreGpuProgram.h"
34#include "OgreColourValue.h"
35#include "OgreBlendMode.h"
36#include "OgreCommon.h"
37#include "OgreLight.h"
38#include "OgreTextureUnitState.h"
39
40namespace Ogre {
41    /** Class defining a single pass of a Technique (of a Material), ie
42        a single rendering call.
43    @remarks
44        Rendering can be repeated with many passes for more complex effects.
45        Each pass is either a fixed-function pass (meaning it does not use
46        a vertex or fragment program) or a programmable pass (meaning it does
47        use either a vertex and fragment program, or both).
48    @par
49        Programmable passes are complex to define, because they require custom
50        programs and you have to set all constant inputs to the programs (like
51        the position of lights, any base material colours you wish to use etc), but
52        they do give you much total flexibility over the algorithms used to render your
53        pass, and you can create some effects which are impossible with a fixed-function pass.
54        On the other hand, you can define a fixed-function pass in very little time, and
55        you can use a range of fixed-function effects like environment mapping very
56        easily, plus your pass will be more likely to be compatible with older hardware.
57        There are pros and cons to both, just remember that if you use a programmable
58        pass to create some great effects, allow more time for definition and testing.
59    */
60    class _OgreExport Pass
61    {
62        public:
63                /** Definition of a functor for calculating the hashcode of a Pass.
64                @remarks
65                        The hashcode of a Pass is used to sort Passes for rendering, in order
66                        to reduce the number of render state changes. Each Pass represents a
67                        single unique set of states, but by ordering them, state changes can
68                        be minimised between passes. An implementation of this functor should
69                        order passes so that the elements that you want to keep constant are
70                        sorted next to each other.
71                @see Pass::setHashFunc
72                */
73                struct HashFunc
74                {
75                        virtual uint32 operator()(const Pass* p) const = 0;
76                        /// Need virtual destructor in case subclasses use it
77                        virtual ~HashFunc() {}
78                };
79    protected:
80        Technique* mParent;
81        unsigned short mIndex; // pass index
82        String mName; // optional name for the pass
83        uint32 mHash; // pass hash
84        //-------------------------------------------------------------------------
85        // Colour properties, only applicable in fixed-function passes
86        ColourValue mAmbient;
87        ColourValue mDiffuse;
88        ColourValue mSpecular;
89        ColourValue mEmissive;
90        Real mShininess;
91        TrackVertexColourType mTracking;
92        //-------------------------------------------------------------------------
93
94        //-------------------------------------------------------------------------
95        // Blending factors
96        SceneBlendFactor mSourceBlendFactor;
97        SceneBlendFactor mDestBlendFactor;
98        //-------------------------------------------------------------------------
99
100        //-------------------------------------------------------------------------
101        // Depth buffer settings
102        bool mDepthCheck;
103        bool mDepthWrite;
104        CompareFunction mDepthFunc;
105        float mDepthBiasConstant;
106                float mDepthBiasSlopeScale;
107
108        // Colour buffer settings
109        bool mColourWrite;
110
111                // Alpha reject settings
112                CompareFunction mAlphaRejectFunc;
113                unsigned char mAlphaRejectVal;
114        //-------------------------------------------------------------------------
115
116        //-------------------------------------------------------------------------
117        // Culling mode
118        CullingMode mCullMode;
119        ManualCullingMode mManualCullMode;
120        //-------------------------------------------------------------------------
121
122        /// Lighting enabled?
123        bool mLightingEnabled;
124        /// Max simultaneous lights
125        unsigned short mMaxSimultaneousLights;
126                /// Starting light index
127                unsigned short mStartLight;
128                /// Run this pass once per light?
129                bool mIteratePerLight;
130                /// Iterate per how many lights?
131                unsigned short mLightsPerIteration;
132        // Should it only be run for a certain light type?
133        bool mRunOnlyForOneLightType;
134        Light::LightTypes mOnlyLightType;
135
136        /// Shading options
137        ShadeOptions mShadeOptions;
138                /// Polygon mode
139                PolygonMode mPolygonMode;
140
141        //-------------------------------------------------------------------------
142        // Fog
143        bool mFogOverride;
144        FogMode mFogMode;
145        ColourValue mFogColour;
146        Real mFogStart;
147        Real mFogEnd;
148        Real mFogDensity;
149        //-------------------------------------------------------------------------
150
151        /// Storage of texture unit states
152        typedef std::vector<TextureUnitState*> TextureUnitStates;
153        TextureUnitStates mTextureUnitStates;
154
155                // Vertex program details
156                GpuProgramUsage *mVertexProgramUsage;
157        // Vertex program details
158        GpuProgramUsage *mShadowCasterVertexProgramUsage;
159        // Vertex program details
160        GpuProgramUsage *mShadowReceiverVertexProgramUsage;
161                // Fragment program details
162                GpuProgramUsage *mFragmentProgramUsage;
163                // Fragment program details
164                GpuProgramUsage *mShadowReceiverFragmentProgramUsage;
165        // Is this pass queued for deletion?
166        bool mQueuedForDeletion;
167        // number of pass iterations to perform
168        size_t mPassIterationCount;
169                // point size, applies when not using per-vertex point size
170                Real mPointSize;
171                Real mPointMinSize;
172                Real mPointMaxSize;
173                bool mPointSpritesEnabled;
174                bool mPointAttenuationEnabled;
175                // constant, linear, quadratic coeffs
176                Real mPointAttenuationCoeffs[3];
177                // TU Content type lookups
178                typedef std::vector<unsigned short> ContentTypeLookup;
179                mutable ContentTypeLookup mShadowContentTypeLookup;
180                mutable bool mContentTypeLookupBuilt;
181
182        public:
183                typedef std::set<Pass*> PassSet;
184    protected:
185                /// List of Passes whose hashes need recalculating
186                static PassSet msDirtyHashList;
187        /// The place where passes go to die
188        static PassSet msPassGraveyard;
189                /// The Pass hash functor
190                static HashFunc* msHashFunc;
191    public:
192                OGRE_STATIC_MUTEX(msDirtyHashListMutex);
193                OGRE_STATIC_MUTEX(msPassGraveyardMutex);
194        /// Default constructor
195                Pass(Technique* parent, unsigned short index);
196        /// Copy constructor
197        Pass(Technique* parent, unsigned short index, const Pass& oth );
198        /// Operator = overload
199        Pass& operator=(const Pass& oth);
200        ~Pass();
201
202        /// Returns true if this pass is programmable ie includes either a vertex or fragment program.
203        bool isProgrammable(void) const { return mVertexProgramUsage || mFragmentProgramUsage; }
204        /// Returns true if this pass uses a programmable vertex pipeline
205        bool hasVertexProgram(void) const { return mVertexProgramUsage != NULL; }
206        /// Returns true if this pass uses a programmable fragment pipeline
207        bool hasFragmentProgram(void) const { return mFragmentProgramUsage != NULL; }
208        /// Returns true if this pass uses a shadow caster vertex program
209        bool hasShadowCasterVertexProgram(void) const { return mShadowCasterVertexProgramUsage != NULL; }
210        /// Returns true if this pass uses a shadow receiver vertex program
211        bool hasShadowReceiverVertexProgram(void) const { return mShadowReceiverVertexProgramUsage != NULL; }
212        /// Returns true if this pass uses a shadow receiver fragment program
213        bool hasShadowReceiverFragmentProgram(void) const { return mShadowReceiverFragmentProgramUsage != NULL; }
214
215
216        /// Gets the index of this Pass in the parent Technique
217        unsigned short getIndex(void) const { return mIndex; }
218        /* Set the name of the pass
219        @remarks
220        The name of the pass is optional.  Its usefull in material scripts where a material could inherit
221        from another material and only want to modify a particalar pass.
222        */
223        void setName(const String& name);
224        /// get the name of the pass
225        const String& getName(void) const { return mName; }
226
227        /** Sets the ambient colour reflectance properties of this pass.
228        @remarks
229        The base colour of a pass is determined by how much red, green and blue light is reflects
230        (provided texture layer #0 has a blend mode other than LBO_REPLACE). This property determines how
231        much ambient light (directionless global light) is reflected. The default is full white, meaning
232        objects are completely globally illuminated. Reduce this if you want to see diffuse or specular light
233        effects, or change the blend of colours to make the object have a base colour other than white.
234        @note
235        This setting has no effect if dynamic lighting is disabled (see Pass::setLightingEnabled),
236        or if this is a programmable pass.
237        */
238        void setAmbient(Real red, Real green, Real blue);
239
240        /** Sets the ambient colour reflectance properties of this pass.
241        @remarks
242        The base colour of a pass is determined by how much red, green and blue light is reflects
243        (provided texture layer #0 has a blend mode other than LBO_REPLACE). This property determines how
244        much ambient light (directionless global light) is reflected. The default is full white, meaning
245        objects are completely globally illuminated. Reduce this if you want to see diffuse or specular light
246        effects, or change the blend of colours to make the object have a base colour other than white.
247        @note
248        This setting has no effect if dynamic lighting is disabled (see Pass::setLightingEnabled),
249        or if this is a programmable pass.
250        */
251
252        void setAmbient(const ColourValue& ambient);
253
254        /** Sets the diffuse colour reflectance properties of this pass.
255        @remarks
256        The base colour of a pass is determined by how much red, green and blue light is reflects
257        (provided texture layer #0 has a blend mode other than LBO_REPLACE). This property determines how
258        much diffuse light (light from instances of the Light class in the scene) is reflected. The default
259        is full white, meaning objects reflect the maximum white light they can from Light objects.
260        @note
261        This setting has no effect if dynamic lighting is disabled (see Pass::setLightingEnabled),
262        or if this is a programmable pass.
263        */
264        void setDiffuse(Real red, Real green, Real blue, Real alpha);
265
266        /** Sets the diffuse colour reflectance properties of this pass.
267        @remarks
268        The base colour of a pass is determined by how much red, green and blue light is reflects
269        (provided texture layer #0 has a blend mode other than LBO_REPLACE). This property determines how
270        much diffuse light (light from instances of the Light class in the scene) is reflected. The default
271        is full white, meaning objects reflect the maximum white light they can from Light objects.
272        @note
273        This setting has no effect if dynamic lighting is disabled (see Pass::setLightingEnabled),
274        or if this is a programmable pass.
275        */
276        void setDiffuse(const ColourValue& diffuse);
277
278        /** Sets the specular colour reflectance properties of this pass.
279        @remarks
280        The base colour of a pass is determined by how much red, green and blue light is reflects
281        (provided texture layer #0 has a blend mode other than LBO_REPLACE). This property determines how
282        much specular light (highlights from instances of the Light class in the scene) is reflected.
283        The default is to reflect no specular light.
284        @note
285        The size of the specular highlights is determined by the separate 'shininess' property.
286        @note
287        This setting has no effect if dynamic lighting is disabled (see Pass::setLightingEnabled),
288        or if this is a programmable pass.
289        */
290        void setSpecular(Real red, Real green, Real blue, Real alpha);
291
292        /** Sets the specular colour reflectance properties of this pass.
293        @remarks
294        The base colour of a pass is determined by how much red, green and blue light is reflects
295        (provided texture layer #0 has a blend mode other than LBO_REPLACE). This property determines how
296        much specular light (highlights from instances of the Light class in the scene) is reflected.
297        The default is to reflect no specular light.
298        @note
299        The size of the specular highlights is determined by the separate 'shininess' property.
300        @note
301        This setting has no effect if dynamic lighting is disabled (see Pass::setLightingEnabled),
302        or if this is a programmable pass.
303        */
304        void setSpecular(const ColourValue& specular);
305
306        /** Sets the shininess of the pass, affecting the size of specular highlights.
307        @note
308        This setting has no effect if dynamic lighting is disabled (see Pass::setLightingEnabled),
309        or if this is a programmable pass.
310        */
311        void setShininess(Real val);
312
313        /** Sets the amount of self-illumination an object has.
314        @remarks
315        If an object is self-illuminating, it does not need external sources to light it, ambient or
316        otherwise. It's like the object has it's own personal ambient light. This property is rarely useful since
317        you can already specify per-pass ambient light, but is here for completeness.
318        @note
319        This setting has no effect if dynamic lighting is disabled (see Pass::setLightingEnabled),
320        or if this is a programmable pass.
321        */
322        void setSelfIllumination(Real red, Real green, Real blue);
323
324        /** Sets the amount of self-illumination an object has.
325        @remarks
326        If an object is self-illuminating, it does not need external sources to light it, ambient or
327        otherwise. It's like the object has it's own personal ambient light. This property is rarely useful since
328        you can already specify per-pass ambient light, but is here for completeness.
329        @note
330        This setting has no effect if dynamic lighting is disabled (see Pass::setLightingEnabled),
331        or if this is a programmable pass.
332        */
333        void setSelfIllumination(const ColourValue& selfIllum);
334
335        /** Sets which material properties follow the vertex colour
336         */
337        void setVertexColourTracking(TrackVertexColourType tracking);
338
339        /** Gets the point size of the pass.
340                @remarks
341                        This property determines what point size is used to render a point
342                        list.
343        */
344        Real getPointSize(void) const;
345
346                /** Sets the point size of this pass.
347                @remarks
348                        This setting allows you to change the size of points when rendering
349                        a point list, or a list of point sprites. The interpretation of this
350                        command depends on the Pass::setPointSizeAttenuation option - if it
351                        is off (the default), the point size is in screen pixels, if it is on,
352                        it expressed as normalised screen coordinates (1.0 is the height of
353                        the screen) when the point is at the origin.
354                @note
355                        Some drivers have an upper limit on the size of points they support
356                        - this can even vary between APIs on the same card! Don't rely on
357                        point sizes that cause the point sprites to get very large on screen,
358                        since they may get clamped on some cards. Upper sizes can range from
359                        64 to 256 pixels.
360                */
361                void setPointSize(Real ps);
362
363                /** Sets whether or not rendering points using OT_POINT_LIST will
364                        render point sprites (textured quads) or plain points (dots).
365                @param enabled True enables point sprites, false returns to normal
366                        point rendering.
367                */
368                void setPointSpritesEnabled(bool enabled);
369
370                /** Returns whether point sprites are enabled when rendering a
371                        point list.
372                */
373                bool getPointSpritesEnabled(void) const;
374
375                /** Sets how points are attenuated with distance.
376                @remarks
377                        When performing point rendering or point sprite rendering,
378                        point size can be attenuated with distance. The equation for
379                        doing this is attenuation = 1 / (constant + linear * dist + quadratic * d^2).
380                @par
381                        For example, to disable distance attenuation (constant screensize)
382                        you would set constant to 1, and linear and quadratic to 0. A
383                        standard perspective attenuation would be 0, 1, 0 respectively.
384                @note
385                        The resulting size is clamped to the minimum and maximum point
386                        size.
387                @param enabled Whether point attenuation is enabled
388                @param constant, linear, quadratic Parameters to the attentuation
389                        function defined above
390                */
391                void setPointAttenuation(bool enabled,
392                        Real constant = 0.0f, Real linear = 1.0f, Real quadratic = 0.0f);
393
394                /** Returns whether points are attenuated with distance. */
395                bool isPointAttenuationEnabled(void) const;
396
397                /** Returns the constant coefficient of point attenuation. */
398                Real getPointAttenuationConstant(void) const;
399                /** Returns the linear coefficient of point attenuation. */
400                Real getPointAttenuationLinear(void) const;
401                /** Returns the quadratic coefficient of point attenuation. */
402                Real getPointAttenuationQuadratic(void) const;
403
404                /** Set the minimum point size, when point attenuation is in use. */
405                void setPointMinSize(Real min);
406                /** Get the minimum point size, when point attenuation is in use. */
407                Real getPointMinSize(void) const;
408                /** Set the maximum point size, when point attenuation is in use.
409                @remarks Setting this to 0 indicates the max size supported by the card.
410                */
411                void setPointMaxSize(Real max);
412                /** Get the maximum point size, when point attenuation is in use.
413                @remarks 0 indicates the max size supported by the card.
414                */
415                Real getPointMaxSize(void) const;
416
417                /** Gets the ambient colour reflectance of the pass.
418        */
419        const ColourValue& getAmbient(void) const;
420
421        /** Gets the diffuse colour reflectance of the pass.
422        */
423        const ColourValue& getDiffuse(void) const;
424
425        /** Gets the specular colour reflectance of the pass.
426        */
427        const ColourValue& getSpecular(void) const;
428
429        /** Gets the self illumination colour of the pass.
430        */
431        const ColourValue& getSelfIllumination(void) const;
432
433        /** Gets the 'shininess' property of the pass (affects specular highlights).
434        */
435        Real getShininess(void) const;
436
437        /** Gets which material properties follow the vertex colour
438         */
439        TrackVertexColourType getVertexColourTracking(void) const;
440
441        /** Inserts a new TextureUnitState object into the Pass.
442        @remarks
443        This unit is is added on top of all previous units.
444        */
445        TextureUnitState* createTextureUnitState(void);
446        /** Inserts a new TextureUnitState object into the Pass.
447        @remarks
448        This unit is is added on top of all previous units.
449        @param
450        name The basic name of the texture e.g. brickwall.jpg, stonefloor.png
451        @param
452        texCoordSet The index of the texture coordinate set to use.
453        @note
454        Applies to both fixed-function and programmable passes.
455        */
456        TextureUnitState* createTextureUnitState( const String& textureName, unsigned short texCoordSet = 0);
457                /** Adds the passed in TextureUnitState, to the existing Pass.
458        @param
459        state The Texture Unit State to be attached to this pass.  It must not be attached to another pass.
460        @note
461            Throws an exception if the TextureUnitState is attached to another Pass.*/
462                void addTextureUnitState(TextureUnitState* state);
463        /** Retrieves a pointer to a texture unit state so it may be modified.
464        */
465        TextureUnitState* getTextureUnitState(unsigned short index);
466        /** Retrieves the Texture Unit State matching name.
467            Returns 0 if name match is not found.
468        */
469        TextureUnitState* getTextureUnitState(const String& name);
470                /** Retrieves a const pointer to a texture unit state.
471                */
472                const TextureUnitState* getTextureUnitState(unsigned short index) const;
473                /** Retrieves the Texture Unit State matching name.
474                Returns 0 if name match is not found.
475                */
476                const TextureUnitState* getTextureUnitState(const String& name) const;
477
478        /**  Retrieve the index of the Texture Unit State in the pass.
479        @param
480        state The Texture Unit State this is attached to this pass.
481        @note
482            Throws an exception if the state is not attached to the pass.
483        */
484        unsigned short getTextureUnitStateIndex(const TextureUnitState* state) const;
485
486        typedef VectorIterator<TextureUnitStates> TextureUnitStateIterator;
487        /** Get an iterator over the TextureUnitStates contained in this Pass. */
488        TextureUnitStateIterator getTextureUnitStateIterator(void);
489
490                typedef ConstVectorIterator<TextureUnitStates> ConstTextureUnitStateIterator;
491                /** Get an iterator over the TextureUnitStates contained in this Pass. */
492                ConstTextureUnitStateIterator getTextureUnitStateIterator(void) const;
493
494                /** Removes the indexed texture unit state from this pass.
495        @remarks
496            Note that removing a texture which is not the topmost will have a larger performance impact.
497        */
498        void removeTextureUnitState(unsigned short index);
499
500        /** Removes all texture unit settings.
501        */
502        void removeAllTextureUnitStates(void);
503
504        /** Returns the number of texture unit settings.
505        */
506        unsigned short getNumTextureUnitStates(void) const
507        {
508            return static_cast<unsigned short>(mTextureUnitStates.size());
509        }
510
511        /** Sets the kind of blending this pass has with the existing contents of the scene.
512        @remarks
513        Wheras the texture blending operations seen in the TextureUnitState class are concerned with
514        blending between texture layers, this blending is about combining the output of the Pass
515        as a whole with the existing contents of the rendering target. This blending therefore allows
516        object transparency and other special effects. If all passes in a technique have a scene
517        blend, then the whole technique is considered to be transparent.
518        @par
519        This method allows you to select one of a number of predefined blending types. If you require more
520        control than this, use the alternative version of this method which allows you to specify source and
521        destination blend factors.
522        @note
523        This method is applicable for both the fixed-function and programmable pipelines.
524        @param
525        sbt One of the predefined SceneBlendType blending types
526        */
527        void setSceneBlending( const SceneBlendType sbt );
528
529        /** Allows very fine control of blending this Pass with the existing contents of the scene.
530        @remarks
531        Wheras the texture blending operations seen in the TextureUnitState class are concerned with
532        blending between texture layers, this blending is about combining the output of the material
533        as a whole with the existing contents of the rendering target. This blending therefore allows
534        object transparency and other special effects.
535        @par
536        This version of the method allows complete control over the blending operation, by specifying the
537        source and destination blending factors. The result of the blending operation is:
538        <span align="center">
539        final = (texture * sourceFactor) + (pixel * destFactor)
540        </span>
541        @par
542        Each of the factors is specified as one of a number of options, as specified in the SceneBlendFactor
543        enumerated type.
544        @param
545        sourceFactor The source factor in the above calculation, i.e. multiplied by the texture colour components.
546        @param
547        destFactor The destination factor in the above calculation, i.e. multiplied by the pixel colour components.
548        @note
549        This method is applicable for both the fixed-function and programmable pipelines.
550        */
551        void setSceneBlending( const SceneBlendFactor sourceFactor, const SceneBlendFactor destFactor);
552
553        /** Retrieves the source blending factor for the material (as set using Materiall::setSceneBlending).
554        */
555        SceneBlendFactor getSourceBlendFactor() const;
556
557        /** Retrieves the destination blending factor for the material (as set using Materiall::setSceneBlending).
558        */
559        SceneBlendFactor getDestBlendFactor() const;
560
561                /** Returns true if this pass has some element of transparency. */
562                bool isTransparent(void) const;
563
564                /** Sets whether or not this pass renders with depth-buffer checking on or not.
565        @remarks
566        If depth-buffer checking is on, whenever a pixel is about to be written to the frame buffer
567        the depth buffer is checked to see if the pixel is in front of all other pixels written at that
568        point. If not, the pixel is not written.
569        @par
570        If depth checking is off, pixels are written no matter what has been rendered before.
571        Also see setDepthFunction for more advanced depth check configuration.
572        @see
573        setDepthFunction
574        */
575        void setDepthCheckEnabled(bool enabled);
576
577        /** Returns whether or not this pass renders with depth-buffer checking on or not.
578        @see
579        setDepthCheckEnabled
580        */
581        bool getDepthCheckEnabled(void) const;
582
583        /** Sets whether or not this pass renders with depth-buffer writing on or not.
584        @remarks
585        If depth-buffer writing is on, whenever a pixel is written to the frame buffer
586        the depth buffer is updated with the depth value of that new pixel, thus affecting future
587        rendering operations if future pixels are behind this one.
588        @par
589        If depth writing is off, pixels are written without updating the depth buffer Depth writing should
590        normally be on but can be turned off when rendering static backgrounds or when rendering a collection
591        of transparent objects at the end of a scene so that they overlap each other correctly.
592        */
593        void setDepthWriteEnabled(bool enabled);
594
595        /** Returns whether or not this pass renders with depth-buffer writing on or not.
596        @see
597        setDepthWriteEnabled
598        */
599        bool getDepthWriteEnabled(void) const;
600
601        /** Sets the function used to compare depth values when depth checking is on.
602        @remarks
603        If depth checking is enabled (see setDepthCheckEnabled) a comparison occurs between the depth
604        value of the pixel to be written and the current contents of the buffer. This comparison is
605        normally CMPF_LESS_EQUAL, i.e. the pixel is written if it is closer (or at the same distance)
606        than the current contents. If you wish you can change this comparison using this method.
607        */
608        void setDepthFunction( CompareFunction func );
609        /** Returns the function used to compare depth values when depth checking is on.
610        @see
611        setDepthFunction
612        */
613        CompareFunction getDepthFunction(void) const;
614
615                /** Sets whether or not colour buffer writing is enabled for this Pass.
616                @remarks
617                        For some effects, you might wish to turn off the colour write operation
618                        when rendering geometry; this means that only the depth buffer will be
619                        updated (provided you have depth buffer writing enabled, which you
620                        probably will do, although you may wish to only update the stencil
621                        buffer for example - stencil buffer state is managed at the RenderSystem
622                        level only, not the Material since you are likely to want to manage it
623                        at a higher level).
624                */
625                void setColourWriteEnabled(bool enabled);
626                /** Determines if colour buffer writing is enabled for this pass. */
627                bool getColourWriteEnabled(void) const;
628
629        /** Sets the culling mode for this pass  based on the 'vertex winding'.
630        @remarks
631        A typical way for the rendering engine to cull triangles is based on the 'vertex winding' of
632        triangles. Vertex winding refers to the direction in which the vertices are passed or indexed
633        to in the rendering operation as viewed from the camera, and will wither be clockwise or
634        anticlockwise (that's 'counterclockwise' for you Americans out there ;) The default is
635        CULL_CLOCKWISE i.e. that only triangles whose vertices are passed/indexed in anticlockwise order
636        are rendered - this is a common approach and is used in 3D studio models for example. You can
637        alter this culling mode if you wish but it is not advised unless you know what you are doing.
638        @par
639        You may wish to use the CULL_NONE option for mesh data that you cull yourself where the vertex
640        winding is uncertain.
641        */
642        void setCullingMode( CullingMode mode );
643
644        /** Returns the culling mode for geometry rendered with this pass. See setCullingMode for more information.
645        */
646        CullingMode getCullingMode(void) const;
647
648        /** Sets the manual culling mode, performed by CPU rather than hardware.
649        @pemarks
650        In some situations you want to use manual culling of triangles rather than sending the
651        triangles to the hardware and letting it cull them. This setting only takes effect on SceneManager's
652        that use it (since it is best used on large groups of planar world geometry rather than on movable
653        geometry since this would be expensive), but if used can cull geometry before it is sent to the
654        hardware.
655        @note
656        The default for this setting is MANUAL_CULL_BACK.
657        @param
658        mode The mode to use - see enum ManualCullingMode for details
659
660        */
661        void setManualCullingMode( ManualCullingMode mode );
662
663        /** Retrieves the manual culling mode for this pass
664        @see
665        setManualCullingMode
666        */
667        ManualCullingMode getManualCullingMode(void) const;
668
669        /** Sets whether or not dynamic lighting is enabled.
670        @param
671        enabled
672        If true, dynamic lighting is performed on geometry with normals supplied, geometry without
673        normals will not be displayed.
674        @par
675        If false, no lighting is applied and all geometry will be full brightness.
676        */
677        void setLightingEnabled(bool enabled);
678
679        /** Returns whether or not dynamic lighting is enabled.
680        */
681        bool getLightingEnabled(void) const;
682
683        /** Sets the maximum number of lights to be used by this pass.
684        @remarks
685            During rendering, if lighting is enabled (or if the pass uses an automatic
686            program parameter based on a light) the engine will request the nearest lights
687            to the object being rendered in order to work out which ones to use. This
688            parameter sets the limit on the number of lights which should apply to objects
689            rendered with this pass.
690        */
691        void setMaxSimultaneousLights(unsigned short maxLights);
692        /** Gets the maximum number of lights to be used by this pass. */
693        unsigned short getMaxSimultaneousLights(void) const;
694
695                /** Sets the light index that this pass will start at in the light list.
696                @remarks
697                        Normally the lights passed to a pass will start from the beginning
698                        of the light list for this object. This option allows you to make this
699                        pass start from a higher light index, for example if one of your earlier
700                        passes could deal with lights 0-3, and this pass dealt with lights 4+.
701                        This option also has an interaction with pass iteration, in that
702                        if you choose to iterate this pass per light too, the iteration will
703                        only begin from light 4.
704                */
705                void setStartLight(unsigned short startLight);
706                /** Gets the light index that this pass will start at in the light list. */
707                unsigned short getStartLight(void) const;
708
709        /** Sets the type of light shading required
710        @note
711        The default shading method is Gouraud shading.
712        */
713        void setShadingMode( ShadeOptions mode );
714
715        /** Returns the type of light shading to be used.
716        */
717        ShadeOptions getShadingMode(void) const;
718
719                /** Sets the type of polygon rendering required
720                @note
721                The default shading method is Solid
722                */
723                void setPolygonMode( PolygonMode mode );
724
725                /** Returns the type of light shading to be used.
726                */
727                PolygonMode getPolygonMode(void) const;
728
729        /** Sets the fogging mode applied to this pass.
730        @remarks
731        Fogging is an effect that is applied as polys are rendered. Sometimes, you want
732        fog to be applied to an entire scene. Other times, you want it to be applied to a few
733        polygons only. This pass-level specification of fog parameters lets you easily manage
734        both.
735        @par
736        The SceneManager class also has a setFog method which applies scene-level fog. This method
737        lets you change the fog behaviour for this pass compared to the standard scene-level fog.
738        @param
739        overrideScene If true, you authorise this pass to override the scene's fog params with it's own settings.
740        If you specify false, so other parameters are necessary, and this is the default behaviour for passs.
741        @param
742        mode Only applicable if overrideScene is true. You can disable fog which is turned on for the
743        rest of the scene by specifying FOG_NONE. Otherwise, set a pass-specific fog mode as
744        defined in the enum FogMode.
745        @param
746        colour The colour of the fog. Either set this to the same as your viewport background colour,
747        or to blend in with a skydome or skybox.
748        @param
749        expDensity The density of the fog in FOG_EXP or FOG_EXP2 mode, as a value between 0 and 1.
750        The default is 0.001.
751        @param
752        linearStart Distance in world units at which linear fog starts to encroach.
753        Only applicable if mode is FOG_LINEAR.
754        @param
755        linearEnd Distance in world units at which linear fog becomes completely opaque.
756        Only applicable if mode is FOG_LINEAR.
757        */
758        void setFog(
759            bool overrideScene,
760            FogMode mode = FOG_NONE,
761            const ColourValue& colour = ColourValue::White,
762            Real expDensity = 0.001, Real linearStart = 0.0, Real linearEnd = 1.0 );
763
764        /** Returns true if this pass is to override the scene fog settings.
765        */
766        bool getFogOverride(void) const;
767
768        /** Returns the fog mode for this pass.
769        @note
770        Only valid if getFogOverride is true.
771        */
772        FogMode getFogMode(void) const;
773
774        /** Returns the fog colour for the scene.
775        */
776        const ColourValue& getFogColour(void) const;
777
778        /** Returns the fog start distance for this pass.
779        @note
780        Only valid if getFogOverride is true.
781        */
782        Real getFogStart(void) const;
783
784        /** Returns the fog end distance for this pass.
785        @note
786        Only valid if getFogOverride is true.
787        */
788        Real getFogEnd(void) const;
789
790        /** Returns the fog density for this pass.
791        @note
792        Only valid if getFogOverride is true.
793        */
794        Real getFogDensity(void) const;
795
796        /** Sets the depth bias to be used for this material.
797        @remarks
798        When polygons are coplanar, you can get problems with 'depth fighting' where
799        the pixels from the two polys compete for the same screen pixel. This is particularly
800        a problem for decals (polys attached to another surface to represent details such as
801        bulletholes etc.).
802        @par
803        A way to combat this problem is to use a depth bias to adjust the depth buffer value
804        used for the decal such that it is slightly higher than the true value, ensuring that
805        the decal appears on top. There are two aspects to the biasing, a constant
806                bias value and a slope-relative biasing value, which varies according to the
807                maximum depth slope relative to the camera, ie:
808                <pre>finalBias = maxSlope * slopeScaleBias + constantBias</pre>
809                Note that slope scale bias, whilst more accurate, may be ignored by old hardware.
810        @param constantBias The constant bias value, expressed as a factor of the
811                        minimum observable depth
812                @param slopeScaleBias The slope-relative bias value, expressed as a factor
813                        of the depth slope
814                */
815        void setDepthBias(float constantBias, float slopeScaleBias = 0.0f);
816
817        /** Retrieves the const depth bias value as set by setDepthBias. */
818        float getDepthBiasConstant(void) const;
819                /** Retrieves the slope-scale depth bias value as set by setDepthBias. */
820                float getDepthBiasSlopeScale(void) const;
821
822        /** Sets the way the pass will have use alpha to totally reject pixels from the pipeline.
823        @remarks
824                        The default is CMPF_ALWAYS_PASS i.e. alpha is not used to reject pixels.
825        @param func The comparison which must pass for the pixel to be written.
826        @param value 1 byte value against which alpha values will be tested(0-255)
827        @note
828                        This option applies in both the fixed function and the programmable pipeline.
829        */
830        void setAlphaRejectSettings(CompareFunction func, unsigned char value);
831
832                /** Sets the alpha reject function. See setAlphaRejectSettings for more information.
833                */
834                void setAlphaRejectFunction(CompareFunction func);
835
836                /** Gets the alpha reject value. See setAlphaRejectSettings for more information.
837                */
838                void setAlphaRejectValue(unsigned char val);
839
840                /** Gets the alpha reject function. See setAlphaRejectSettings for more information.
841        */
842                CompareFunction getAlphaRejectFunction(void) const { return mAlphaRejectFunc; }
843
844        /** Gets the alpha reject value. See setAlphaRejectSettings for more information.
845        */
846                unsigned char getAlphaRejectValue(void) const { return mAlphaRejectVal; }
847        /** Sets whether or not this pass should iterate per light or number of
848                        lights which can affect the object being rendered.
849                @remarks
850                        The default behaviour for a pass (when this option is 'false'), is
851                        for a pass to be rendered only once (or the number of times set in
852                        setPassIterationCount), with all the lights which could
853                        affect this object set at the same time (up to the maximum lights
854                        allowed in the render system, which is typically 8).
855                @par
856                        Setting this option to 'true' changes this behaviour, such that
857                        instead of trying to issue render this pass once per object, it
858                        is run <b>per light</b>, or for a group of 'n' lights each time
859                        which can affect this object, the number of
860                        times set in setPassIterationCount (default is once). In
861                        this case, only light index 0 is ever used, and is a different light
862                        every time the pass is issued, up to the total number of lights
863                        which is affecting this object. This has 2 advantages:
864                        <ul><li>There is no limit on the number of lights which can be
865                        supported</li>
866                        <li>It's easier to write vertex / fragment programs for this because
867                        a single program can be used for any number of lights</li>
868                        </ul>
869                        However, this technique is more expensive, and typically you
870                        will want an additional ambient pass, because if no lights are
871                        affecting the object it will not be rendered at all, which will look
872                        odd even if ambient light is zero (imagine if there are lit objects
873                        behind it - the objects silhouette would not show up). Therefore,
874                        use this option with care, and you would be well advised to provide
875                        a less expensive fallback technique for use in the distance.
876                @note
877                        The number of times this pass runs is still limited by the maximum
878                        number of lights allowed as set in setMaxSimultaneousLights, so
879                        you will never get more passes than this. Also, the iteration is
880                        started from the 'start light' as set in Pass::setStartLight, and
881                        the number of passes is the number of lights to iterate over divided
882                        by the number of lights per iteration (default 1, set by
883                        setLightCountPerIteration).
884        @param enabled Whether this feature is enabled
885        @param onlyForOneLightType If true, the pass will only be run for a single type
886            of light, other light types will be ignored.
887        @param lightType The single light type which will be considered for this pass
888                */
889        void setIteratePerLight(bool enabled,
890            bool onlyForOneLightType = true, Light::LightTypes lightType = Light::LT_POINT);
891
892        /** Does this pass run once for every light in range? */
893                bool getIteratePerLight(void) const { return mIteratePerLight; }
894        /** Does this pass run only for a single light type (if getIteratePerLight is true). */
895        bool getRunOnlyForOneLightType(void) const { return mRunOnlyForOneLightType; }
896        /** Gets the single light type this pass runs for if  getIteratePerLight and
897            getRunOnlyForOneLightType are both true. */
898        Light::LightTypes getOnlyLightType() const { return mOnlyLightType; }
899
900                /** If light iteration is enabled, determine the number of lights per
901                        iteration.
902                @remarks
903                        The default for this setting is 1, so if you enable light iteration
904                        (Pass::setIteratePerLight), the pass is rendered once per light. If
905                        you set this value higher, the passes will occur once per 'n' lights.
906                        The start of the iteration is set by Pass::setStartLight and the end
907                        by Pass::setMaxSimultaneousLights.
908                */
909                void setLightCountPerIteration(unsigned short c);
910                /** If light iteration is enabled, determine the number of lights per
911                iteration.
912                */
913                unsigned short getLightCountPerIteration(void) const;
914               
915                /// Gets the parent Technique
916        Technique* getParent(void) const { return mParent; }
917
918                /// Gets the resource group of the ultimate parent Material
919                const String& getResourceGroup(void) const;
920
921                /** Sets the details of the vertex program to use.
922                @remarks
923                        Only applicable to programmable passes, this sets the details of
924                        the vertex program to use in this pass. The program will not be
925                        loaded until the parent Material is loaded.
926                @param name The name of the program - this must have been
927                        created using GpuProgramManager by the time that this Pass
928                        is loaded. If this parameter is blank, any vertex program in this pass is disabled.
929        @param resetParams
930            If true, this will create a fresh set of parameters from the
931            new program being linked, so if you had previously set parameters
932            you will have to set them again. If you set this to false, you must
933            be absolutely sure that the parameters match perfectly, and in the
934            case of named parameters refers to the indexes underlying them,
935            not just the names.
936                */
937                void setVertexProgram(const String& name, bool resetParams = true);
938                /** Sets the vertex program parameters.
939                @remarks
940                        Only applicable to programmable passes, and this particular call is
941                        designed for low-level programs; use the named parameter methods
942                        for setting high-level program parameters.
943                */
944                void setVertexProgramParameters(GpuProgramParametersSharedPtr params);
945                /** Gets the name of the vertex program used by this pass. */
946                const String& getVertexProgramName(void) const;
947        /** Gets the vertex program parameters used by this pass. */
948        GpuProgramParametersSharedPtr getVertexProgramParameters(void) const;
949                /** Gets the vertex program used by this pass, only available after _load(). */
950                const GpuProgramPtr& getVertexProgram(void) const;
951
952
953        /** Sets the details of the vertex program to use when rendering as a
954        shadow caster.
955        @remarks
956        Texture-based shadows require that the caster is rendered to a texture
957        in a solid colour (the shadow colour in the case of modulative texture
958        shadows). Whilst Ogre can arrange this for the fixed function
959        pipeline, passes which use vertex programs might need the vertex
960        programs still to run in order to preserve any deformation etc
961        that it does. However, lighting calculations must be a lot simpler,
962        with only the ambient colour being used (which the engine will ensure
963        is bound to the shadow colour).
964        @par
965        Therefore, it is up to implemetors of vertex programs to provide an
966        alternative vertex program which can be used to render the object
967        to a shadow texture. Do all the same vertex transforms, but set the
968        colour of the vertex to the ambient colour, as bound using the
969        standard auto parameter binding mechanism.
970        @note
971        Some vertex programs will work without doing this, because Ogre ensures
972        that all lights except for ambient are set black. However, the chances
973        are that your vertex program is doing a lot of unnecessary work in this
974        case, since the other lights are having no effect, and it is good practice
975        to supply an alternative.
976        @note
977        This is only applicable to programmable passes.
978        @par
979        The default behaviour is for Ogre to switch to fixed-function
980        rendering if an explict vertex program alternative is not set.
981        */
982        void setShadowCasterVertexProgram(const String& name);
983        /** Sets the vertex program parameters for rendering as a shadow caster.
984        @remarks
985        Only applicable to programmable passes, and this particular call is
986        designed for low-level programs; use the named parameter methods
987        for setting high-level program parameters.
988        */
989        void setShadowCasterVertexProgramParameters(GpuProgramParametersSharedPtr params);
990        /** Gets the name of the vertex program used by this pass when rendering shadow casters. */
991        const String& getShadowCasterVertexProgramName(void) const;
992        /** Gets the vertex program parameters used by this pass when rendering shadow casters. */
993        GpuProgramParametersSharedPtr getShadowCasterVertexProgramParameters(void) const;
994        /** Gets the vertex program used by this pass when rendering shadow casters,
995            only available after _load(). */
996        const GpuProgramPtr& getShadowCasterVertexProgram(void) const;
997
998        /** Sets the details of the vertex program to use when rendering as a
999            shadow receiver.
1000        @remarks
1001            Texture-based shadows require that the shadow receiver is rendered using
1002            a projective texture. Whilst Ogre can arrange this for the fixed function
1003            pipeline, passes which use vertex programs might need the vertex
1004            programs still to run in order to preserve any deformation etc
1005            that it does. So in this case, we need a vertex program which does the
1006            appropriate vertex transformation, but generates projective texture
1007            coordinates.
1008        @par
1009            Therefore, it is up to implemetors of vertex programs to provide an
1010            alternative vertex program which can be used to render the object
1011            as a shadow receiver. Do all the same vertex transforms, but generate
1012            <strong>2 sets</strong> of texture coordinates using the auto parameter
1013            ACT_TEXTURE_VIEWPROJ_MATRIX, which Ogre will bind to the parameter name /
1014            index you supply as the second parameter to this method. 2 texture
1015            sets are needed because Ogre needs to use 2 texture units for some
1016            shadow effects.
1017        @note
1018            This is only applicable to programmable passes.
1019        @par
1020            The default behaviour is for Ogre to switch to fixed-function
1021            rendering if an explict vertex program alternative is not set.
1022        */
1023        void setShadowReceiverVertexProgram(const String& name);
1024        /** Sets the vertex program parameters for rendering as a shadow receiver.
1025        @remarks
1026        Only applicable to programmable passes, and this particular call is
1027        designed for low-level programs; use the named parameter methods
1028        for setting high-level program parameters.
1029        */
1030        void setShadowReceiverVertexProgramParameters(GpuProgramParametersSharedPtr params);
1031
1032                /** This method allows you to specify a fragment program for use when
1033                        rendering a texture shadow receiver.
1034                @remarks
1035                        Texture shadows are applied by rendering the receiver. Modulative texture
1036                        shadows are performed as a post-render darkening pass, and as such
1037                        fragment programs are generally not required per-object. Additive
1038                        texture shadows, however, are applied by accumulating light masked
1039                        out using a texture shadow (black & white by default, unless you
1040                        customise this using SceneManager::setCustomShadowCasterMaterial).
1041                        OGRE can do this for you for most materials, but if you use a custom
1042                        lighting program (e.g. per pixel lighting) then you'll need to provide
1043                        a custom version for receiving shadows. You don't need to provide
1044                        this for shadow casters if you don't use self-shadowing since they
1045                        will never be shadow receivers too.
1046                @par
1047                        The shadow texture is always bound to texture unit 0 when rendering
1048                        texture shadow passes. Therefore your custom shadow receiver program
1049                        may well just need to shift it's texture unit usage up by one unit,
1050                        and take the shadow texture into account in its calculations.
1051                */
1052                void setShadowReceiverFragmentProgram(const String& name);
1053        /** Sets the fragment program parameters for rendering as a shadow receiver.
1054        @remarks
1055        Only applicable to programmable passes, and this particular call is
1056        designed for low-level programs; use the named parameter methods
1057        for setting high-level program parameters.
1058        */
1059        void setShadowReceiverFragmentProgramParameters(GpuProgramParametersSharedPtr params);
1060
1061        /** Gets the name of the vertex program used by this pass when rendering shadow receivers. */
1062        const String& getShadowReceiverVertexProgramName(void) const;
1063        /** Gets the vertex program parameters used by this pass when rendering shadow receivers. */
1064        GpuProgramParametersSharedPtr getShadowReceiverVertexProgramParameters(void) const;
1065        /** Gets the vertex program used by this pass when rendering shadow receivers,
1066        only available after _load(). */
1067        const GpuProgramPtr& getShadowReceiverVertexProgram(void) const;
1068
1069                /** Gets the name of the fragment program used by this pass when rendering shadow receivers. */
1070                const String& getShadowReceiverFragmentProgramName(void) const;
1071                /** Gets the fragment program parameters used by this pass when rendering shadow receivers. */
1072                GpuProgramParametersSharedPtr getShadowReceiverFragmentProgramParameters(void) const;
1073                /** Gets the fragment program used by this pass when rendering shadow receivers,
1074                only available after _load(). */
1075                const GpuProgramPtr& getShadowReceiverFragmentProgram(void) const;
1076
1077                /** Sets the details of the fragment program to use.
1078                @remarks
1079                        Only applicable to programmable passes, this sets the details of
1080                        the fragment program to use in this pass. The program will not be
1081                        loaded until the parent Material is loaded.
1082                @param name The name of the program - this must have been
1083                        created using GpuProgramManager by the time that this Pass
1084                        is loaded. If this parameter is blank, any fragment program in this pass is disabled.
1085        @param resetParams
1086            If true, this will create a fresh set of parameters from the
1087            new program being linked, so if you had previously set parameters
1088            you will have to set them again. If you set this to false, you must
1089            be absolutely sure that the parameters match perfectly, and in the
1090            case of named parameters refers to the indexes underlying them,
1091            not just the names.
1092                */
1093                void setFragmentProgram(const String& name, bool resetParams = true);
1094                /** Sets the fragment program parameters.
1095                @remarks
1096                        Only applicable to programmable passes.
1097                */
1098                void setFragmentProgramParameters(GpuProgramParametersSharedPtr params);
1099                /** Gets the name of the fragment program used by this pass. */
1100                const String& getFragmentProgramName(void) const;
1101                /** Gets the fragment program parameters used by this pass. */
1102                GpuProgramParametersSharedPtr getFragmentProgramParameters(void) const;
1103                /** Gets the fragment program used by this pass, only available after _load(). */
1104                const GpuProgramPtr& getFragmentProgram(void) const;
1105
1106                /** Splits this Pass to one which can be handled in the number of
1107                        texture units specified.
1108                @remarks
1109                        Only works on non-programmable passes, programmable passes cannot be
1110                        split, it's up to the author to ensure that there is a fallback Technique
1111                        for less capable cards.
1112                @param numUnits The target number of texture units
1113                @returns A new Pass which contains the remaining units, and a scene_blend
1114                                setting appropriate to approximate the multitexture. This Pass will be
1115                                attached to the parent Technique of this Pass.
1116                */
1117                Pass* _split(unsigned short numUnits);
1118
1119                /** Internal method to adjust pass index. */
1120                void _notifyIndex(unsigned short index);
1121
1122                /** Internal method for loading this pass. */
1123                void _load(void);
1124                /** Internal method for unloading this pass. */
1125                void _unload(void);
1126        // Is this loaded?
1127        bool isLoaded(void) const;
1128
1129        /** Gets the 'hash' of this pass, ie a precomputed number to use for sorting
1130        @remarks
1131            This hash is used to sort passes, and for this reason the pass is hashed
1132            using firstly its index (so that all passes are rendered in order), then
1133            by the textures which it's TextureUnitState instances are using.
1134        */
1135        uint32 getHash(void) const { return mHash; }
1136                /// Mark the hash as dirty
1137                void _dirtyHash(void);
1138        /** Internal method for recalculating the hash.
1139                @remarks
1140                        Do not call this unless you are sure the old hash is not still being
1141                        used by anything. If in doubt, call _dirtyHash if you want to force
1142                        recalculation of the has next time.
1143                */
1144        void _recalculateHash(void);
1145        /** Tells the pass that it needs recompilation. */
1146        void _notifyNeedsRecompile(void);
1147
1148        /** Update any automatic parameters (except lights) on this pass */
1149        void _updateAutoParamsNoLights(const AutoParamDataSource& source) const;
1150        /** Update any automatic light parameters on this pass */
1151        void _updateAutoParamsLightsOnly(const AutoParamDataSource& source) const;
1152
1153                /** Gets the 'nth' texture which references the given content type.
1154                @remarks
1155                        If the 'nth' texture unit which references the content type doesn't
1156                        exist, then this method returns an arbitrary high-value outside the
1157                        valid range to index texture units.
1158                */
1159                unsigned short _getTextureUnitWithContentTypeIndex(
1160                        TextureUnitState::ContentType contentType, unsigned short index) const;
1161
1162        /** Set texture filtering for every texture unit
1163        @note
1164            This property actually exists on the TextureUnitState class
1165            For simplicity, this method allows you to set these properties for
1166            every current TeextureUnitState, If you need more precision, retrieve the
1167            TextureUnitState instance and set the property there.
1168        @see TextureUnitState::setTextureFiltering
1169        */
1170        void setTextureFiltering(TextureFilterOptions filterType);
1171        /** Sets the anisotropy level to be used for all textures.
1172        @note
1173            This property has been moved to the TextureUnitState class, which is accessible via the
1174            Technique and Pass. For simplicity, this method allows you to set these properties for
1175            every current TeextureUnitState, If you need more precision, retrieve the Technique,
1176            Pass and TextureUnitState instances and set the property there.
1177        @see TextureUnitState::setTextureAnisotropy
1178        */
1179        void setTextureAnisotropy(unsigned int maxAniso);
1180                /** Static method to retrieve all the Passes which need their
1181                    hash values recalculated.
1182                */
1183                static const PassSet& getDirtyHashList(void)
1184                { return msDirtyHashList; }
1185        /** Static method to retrieve all the Passes which are pending deletion.
1186        */
1187        static const PassSet& getPassGraveyard(void)
1188        { return msPassGraveyard; }
1189                /** Static method to reset the list of passes which need their hash
1190                    values recalculated.
1191                @remarks
1192                        For performance, the dirty list is not updated progressively as
1193                        the hashes are recalculated, instead we expect the processor of the
1194                        dirty hash list to clear the list when they are done.
1195                */
1196                static void clearDirtyHashList(void);
1197
1198        /** Process all dirty and pending deletion passes. */
1199        static void processPendingPassUpdates(void);
1200
1201        /** Queue this pass for deletion when appropriate. */
1202        void queueForDeletion(void);
1203
1204        /** Returns whether this pass is ambient only.
1205        */
1206        bool isAmbientOnly(void) const;
1207
1208        /** set the number of iterations that this pass
1209        should perform when doing fast multi pass operation.
1210        @remarks
1211            Only applicable for programmable passes.
1212        @param count number of iterations to perform fast multi pass operations.
1213            A value greater than 1 will cause the pass to be executed count number of
1214            times without changing the render state.  This is very usefull for passes
1215            that use programmable shaders that have to iterate more than once but don't
1216            need a render state change.  Using multi pass can dramatically speed up rendering
1217            for materials that do things like fur, blur.
1218            A value of 1 turns off multi pass operation and the pass does
1219            the normal pass operation.
1220        */
1221        void setPassIterationCount(const size_t count) { mPassIterationCount = count; }
1222
1223        /** Gets the pass iteration count value.
1224        */
1225        size_t getPassIterationCount(void) const { return mPassIterationCount; }
1226
1227        /** Applies texture names to Texture Unit State with matching texture name aliases.
1228            All Texture Unit States within the pass are checked.
1229            If matching texture aliases are found then true is returned.
1230
1231        @param
1232            aliasList is a map container of texture alias, texture name pairs
1233        @param
1234            apply set true to apply the texture aliases else just test to see if texture alias matches are found.
1235        @return
1236            True if matching texture aliases were found in the pass.
1237        */
1238        bool applyTextureAliases(const AliasTextureNamePairList& aliasList, const bool apply = true) const;
1239
1240
1241                /** There are some default hash functions used to order passes so that
1242                        render state changes are minimised, this enumerates them.
1243                */
1244                enum BuiltinHashFunction
1245                {
1246                        /** Try to minimise the number of texture changes. */
1247                        MIN_TEXTURE_CHANGE,
1248                        /** Try to minimise the number of GPU program changes.
1249                        @note Only really useful if you use GPU programs for all of your
1250                                materials.
1251                        */
1252                        MIN_GPU_PROGRAM_CHANGE
1253                };
1254                /** Sets one of the default hash functions to be used.
1255                @remarks
1256                        You absolutely must not change the hash function whilst any Pass instances
1257                        exist in the render queue. The only time you can do this is either
1258                        before you render anything, or directly after you manuall call
1259                        RenderQueue::clear(true) to completely destroy the queue structures.
1260                        The default is MIN_TEXTURE_CHANGE.
1261                @note
1262                        You can also implement your own hash function, see the alternate version
1263                        of this method.
1264                @see HashFunc
1265                */
1266                static void setHashFunction(BuiltinHashFunction builtin);
1267
1268                /** Set the hash function used for all passes.
1269                @remarks
1270                        You absolutely must not change the hash function whilst any Pass instances
1271                        exist in the render queue. The only time you can do this is either
1272                        before you render anything, or directly after you manuall call
1273                        RenderQueue::clear(true) to completely destroy the queue structures.
1274                @note
1275                        You can also use one of the built-in hash functions, see the alternate version
1276                        of this method. The default is MIN_TEXTURE_CHANGE.
1277                @see HashFunc
1278                */
1279                static void setHashFunction(HashFunc* hashFunc) { msHashFunc = hashFunc; }
1280
1281                /** Get the hash function used for all passes.
1282                */
1283                static HashFunc* getHashFunction(void) { return msHashFunc; }
1284       
1285    };
1286
1287    enum IlluminationStage
1288    {
1289        /// Part of the rendering which occurs without any kind of direct lighting
1290        IS_AMBIENT,
1291        /// Part of the rendering which occurs per light
1292        IS_PER_LIGHT,
1293        /// Post-lighting rendering
1294        IS_DECAL
1295    };
1296    /** Struct recording a pass which can be used for a specific illumination stage.
1297    @remarks
1298        This structure is used to record categorised passes which fit into a
1299        number of distinct illumination phases - ambient, diffuse / specular
1300        (per-light) and decal (post-lighting texturing).
1301        An original pass may fit into one of these categories already, or it
1302        may require splitting into its component parts in order to be categorised
1303        properly.
1304    */
1305    struct IlluminationPass
1306    {
1307        IlluminationStage stage;
1308        /// The pass to use in this stage
1309        Pass* pass;
1310        /// Whether this pass is one which should be deleted itself
1311        bool destroyOnShutdown;
1312        /// The original pass which spawned this one
1313        Pass* originalPass;
1314    };
1315
1316    typedef std::vector<IlluminationPass*> IlluminationPassList;
1317
1318
1319}
1320
1321#endif
Note: See TracBrowser for help on using the repository browser.