Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: downloads/OgreMain/include/OgreShadowCameraSetupLiSPSM.h @ 1

Last change on this file since 1 was 1, checked in by landauf, 17 years ago
File size: 10.7 KB
Line 
1/*
2-----------------------------------------------------------------------------
3This source file is part of OGRE
4(Object-oriented Graphics Rendering Engine)
5For the latest info, see http://www.ogre3d.org/
6
7Copyright (c) 2006 Torus Knot Software Ltd
8Copyright (c) 2006 Matthias Fink, netAllied GmbH <matthias.fink@web.de>                                                         
9Also see acknowledgements in Readme.html
10
11This program is free software; you can redistribute it and/or modify it under
12the terms of the GNU Lesser General Public License as published by the Free Software
13Foundation; either version 2 of the License, or (at your option) any later
14version.
15
16This program is distributed in the hope that it will be useful, but WITHOUT
17ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
19
20You should have received a copy of the GNU Lesser General Public License along with
21this program; if not, write to the Free Software Foundation, Inc., 59 Temple
22Place - Suite 330, Boston, MA 02111-1307, USA, or go to
23http://www.gnu.org/copyleft/lesser.txt.
24
25You may alternatively use this source under the terms of a specific version of
26the OGRE Unrestricted License provided you have obtained such a license from
27Torus Knot Software Ltd.
28-----------------------------------------------------------------------------
29*/
30#ifndef __ShadowCameraSetupLiSPSM_H__
31#define __ShadowCameraSetupLiSPSM_H__
32
33#include "OgrePrerequisites.h"
34#include "OgreShadowCameraSetupFocused.h"
35
36
37namespace Ogre
38{
39
40        /** Implements the Light Space Perspective Shadow Mapping Algorithm.
41        @remarks
42        Implements the LiSPSM algorithm for an advanced shadow map generation. LiSPSM was
43        developed by Michael Wimmer, Daniel Scherzer and Werner Purgathofer of the TU Wien.
44        The algorithm was presented on the Eurographics Symposium on Rendering 2004.
45        @note
46        Shadow mapping was introduced by Williams in 1978. First a depth image is rendered
47        from the light's view and compared in a second pass with depth values of the normal
48        camera view. In case the depth camera's depth value is greater than the depth seen
49        by the light the fragment lies in the shadow.
50        The concept has a major draw back named perspective aliasing. The shadow map distri-
51        butes the samples uniformly meaning the position of the viewer is ignored. For the
52        viewer however the perspective projection affects near objects to be displayed
53        bigger than further away objects. The same thing happens with the shadow map texels:
54        Near shadows appear very coarse and far away shadows are perfectly sampled.
55        In 2002 Stamminger et al. presented an algorithm called Perspective Shadow Maps
56        (PSM). PSM battles the perspective aliasing by distributing 50% of the shadow map
57        texels for objects in the range of <near clipping plane> to <near clipping plane * 2>
58        which inverts the problem: The shadows near the viewer are perfectly sampled,
59        however far away shadow may contain aliasing artefacts. A near clipping plane may be
60        a problem. But this is not the only one. In the post-perspective space the light
61        sources are non-intuitively mapped: Directional lights may become point light and
62        point lights may become directional lights. Also light sinks (opposite of a light
63        source) may appear.     Another problem are shadow casters located behind the viewer.
64        In post-projective space objects behind the viewer are mapped in front of him with
65        a flipped up-vector.
66        LiSPSM battles the light source problem of the post-projective space by rearranging
67        the light space before transformation in such a way that no special cases appear.
68        This is done by converting point/spot lights into directional lights. The light
69        space is arranged in such a way that the light direction equals the inverse UNIT_Y.
70        In this combination     the directional light will neither change its type nor its
71        direction. Furthermore all visible objects and shadow casters affecting the user's
72        visible area lie in front of the shadow camera: After building the intersection body
73        that contains all these objects (body intersection building was introduced with PSM;
74        have a look at the description for the method "calculateB" for further info) a
75        frustum around the body's light space bounding box is created. A parameter (called
76        'n') automatically adjusts the shadow map sample distribution by specifying the
77        frustum's view point - near plane which affects the perspective warp. In case the
78        distance is small the perspecive warp will be strong. As a consequence near objects
79        will gain quality.
80        However there are still problems. PSM as well as LiSPSM only devote to minimize
81        perspective aliasing. Projection aliasing is still a problem, also 'swimming
82        artefacts' still occur. The LiSPSM quality distribution is very good but not the
83        best available: Some sources say logarithmic shadow mapping is the non plus ultra,
84        however others reject this thought. There is a research project on logarithmic shadow
85        maps. The web page url is http://gamma.cs.unc.edu/logsm/. However there is no techical
86        report available yet (Oct 23rd, 2006).
87        @note
88        More information can be found on the webpage of the TU Wien:
89        http://www.cg.tuwien.ac.at/research/vr/lispsm/
90        @note
91        Original implementation by Matthias Fink <matthias.fink@web.de>, 2006.
92        */
93        class _OgreExport LiSPSMShadowCameraSetup : public FocusedShadowCameraSetup
94        {
95        protected:
96                /// Warp factor adjustment
97                Real mOptAdjustFactor;
98                /// Use simple nopt derivation?
99                bool mUseSimpleNOpt;
100
101                /** Calculates the LiSPSM projection matrix P.
102                @remarks
103                The LiSPSM projection matrix will be built around the axis aligned bounding box
104                of the intersection body B in light space. The distance between the near plane
105                and the projection center is chosen in such a way (distance is set by the para-
106                meter n) that the perspective error is the same on the near and far     plane. In
107                case P equals the identity matrix the algorithm falls back to a uniform shadow
108                mapping matrix.
109                @param lightSpace: matrix of the light space transformation
110                @param bodyB: intersection body B
111                @param bodyLVS: intersection body LVS (relevant space in front of the camera)
112                @param sm: scene manager
113                @param cam: currently active camera
114                @param light: currently active light
115                */
116                Matrix4 calculateLiSPSM(const Matrix4& lightSpace, const PointListBody& bodyB, 
117                        const PointListBody& bodyLVS, const SceneManager& sm, 
118                        const Camera& cam, const Light& light) const;
119
120                /** Calculates the distance between camera position and near clipping plane.
121                @remarks
122                n_opt determines the distance between light space origin (shadow camera position)
123                and     the near clipping plane to achieve an optimal perspective forshortening effect.
124                In this way the texel distibution over the shadow map is controlled.
125
126                Formula:
127                               d
128                n_opt = ---------------
129                        sqrt(z1/z0) - 1
130
131                Parameters:
132                d: distance between the near and the far clipping plane
133                z0: located on the near clipping plane of the intersection body b
134                z1: located on the far clipping plane with the same x/y values as z0           
135                @note
136                A positive value is applied as the distance between viewer and near clipping plane.
137                In case null is returned uniform shadow mapping will be applied.
138                @param lightSpace: matrix of the light space transformation
139                @param bodyBABB_ls: bounding box of the tranformed (light space) bodyB
140                @param bodyLVS: point list of the bodyLVS which describes the scene space which is in
141                front of the light and the camera
142                @param cam: currently active camera
143                */
144                Real calculateNOpt(const Matrix4& lightSpace, const AxisAlignedBox& bodyBABB_ls, 
145                        const PointListBody& bodyLVS, const Camera& cam) const;
146
147                /** Calculates a simpler version than the one above.
148                */
149                Real calculateNOptSimple(const PointListBody& bodyLVS, 
150                        const Camera& cam) const;
151
152                /** Calculates the visible point on the near plane for the n_opt calculation
153                @remarks
154                z0 lies on the parallel plane to the near plane through e and on the near plane of
155                the frustum C (plane z = bodyB_zMax_ls) and on the line x = e.x.
156                @param lightSpace: matrix of the light space transformation
157                @param e: the LiSPSM parameter e is located near or on the near clipping plane of the
158                LiSPSM frustum C
159                @param bodyB_zMax_ls: maximum z-value of the light space bodyB bounding box
160                @param cam: currently active camera
161                */
162                Vector3 calculateZ0_ls(const Matrix4& lightSpace, const Vector3& e, Real bodyB_zMax_ls, 
163                        const Camera& cam) const;
164
165                /** Builds a frustum matrix.
166                @remarks
167                Builds a standard frustum matrix out of the distance infos of the six frustum
168                clipping planes.
169                */
170                Matrix4 buildFrustumProjection(Real left, Real right, Real bottom, 
171                        Real top, Real near, Real far) const;
172
173        public:
174                /** Default constructor.
175                @remarks
176                Nothing done here.
177                */
178                LiSPSMShadowCameraSetup(void);
179
180                /** Default destructor.
181                @remarks
182                Nothing done here.
183                */
184                virtual ~LiSPSMShadowCameraSetup(void);
185
186                /** Returns a LiSPSM shadow camera.
187                @remarks
188                Builds and returns a LiSPSM shadow camera.
189                More information can be found on the webpage of the TU Wien:
190                http://www.cg.tuwien.ac.at/research/vr/lispsm/
191                */
192                virtual void getShadowCamera(const SceneManager *sm, const Camera *cam, 
193                        const Viewport *vp, const Light *light, Camera *texCam) const;
194
195                /** Adjusts the parameter n to produce optimal shadows.
196                @remarks
197                The smaller the parameter n, the stronger the perspective warping effect.
198                The consequence of a stronger warping is that the near shadows will gain
199                quality while the far ones will lose it. Depending on your scene and light
200                types you may want to tweak this value - for example directional lights
201                tend to benefit from higher values of n than other types of light,
202                especially if you expect to see more distant shadows (say if the viewpoint is
203                higher above the ground plane). Remember that you can supply separate
204                ShadowCameraSetup instances configured differently per light if you wish.
205                @param n The adjustment factor - default is 0.1f.
206                */
207                virtual void setOptimalAdjustFactor(Real n) { mOptAdjustFactor = n; }
208                /** Get the parameter n used to produce optimal shadows.
209                @see setOptimalAdjustFactor
210                */
211                virtual Real getOptimalAdjustFactor() const { return mOptAdjustFactor; }
212                /** Sets whether or not to use a slightly simpler version of the
213                        camera near point derivation (default is true)
214                */
215                virtual void setUseSimpleOptimalAdjust(bool s) { mUseSimpleNOpt = s; }
216                /** Gets whether or not to use a slightly simpler version of the
217                camera near point derivation (default is true)
218                */
219                virtual bool getUseSimpleOptimalAdjust() const { return mUseSimpleNOpt; }
220
221        };
222
223}
224
225#endif
226
Note: See TracBrowser for help on using the repository browser.