1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
8 | Also see acknowledgements in Readme.html |
---|
9 | |
---|
10 | This program is free software; you can redistribute it and/or modify it under |
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
13 | version. |
---|
14 | |
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
23 | |
---|
24 | You may alternatively use this source under the terms of a specific version of |
---|
25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
26 | Torus Knot Software Ltd. |
---|
27 | ----------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | #ifndef __SIMDHelper_H__ |
---|
30 | #define __SIMDHelper_H__ |
---|
31 | |
---|
32 | #include "OgrePrerequisites.h" |
---|
33 | #include "OgrePlatformInformation.h" |
---|
34 | |
---|
35 | // Stack-alignment hackery. |
---|
36 | // |
---|
37 | // If macro __OGRE_SIMD_ALIGN_STACK defined, means there requests |
---|
38 | // special code to ensure stack align to a 16-bytes boundary. |
---|
39 | // |
---|
40 | // Note: |
---|
41 | // This macro can only guarantee callee stack pointer (esp) align |
---|
42 | // to a 16-bytes boundary, but not that for frame pointer (ebp). |
---|
43 | // Because most compiler might use frame pointer to access to stack |
---|
44 | // variables, so you need to wrap those alignment required functions |
---|
45 | // with extra function call. |
---|
46 | // |
---|
47 | #if defined(__INTEL_COMPILER) |
---|
48 | // For intel's compiler, simply calling alloca seems to do the right |
---|
49 | // thing. The size of the allocated block seems to be irrelevant. |
---|
50 | #define __OGRE_SIMD_ALIGN_STACK() _alloca(16) |
---|
51 | |
---|
52 | #elif OGRE_CPU == OGRE_CPU_X86 && OGRE_COMPILER == OGRE_COMPILER_GNUC |
---|
53 | // |
---|
54 | // Horrible hack to align the stack to a 16-bytes boundary for gcc. |
---|
55 | // |
---|
56 | // We assume a gcc version >= 2.95 so that |
---|
57 | // -mpreferred-stack-boundary works. Otherwise, all bets are |
---|
58 | // off. However, -mpreferred-stack-boundary does not create a |
---|
59 | // stack alignment, but it only preserves it. Unfortunately, |
---|
60 | // since Ogre are designed as a flexibility library, user might |
---|
61 | // compile their application with wrong stack alignment, even |
---|
62 | // if user taken care with stack alignment, but many versions |
---|
63 | // of libc on linux call main() with the wrong initial stack |
---|
64 | // alignment the result that the code is now pessimally aligned |
---|
65 | // instead of having a 50% chance of being correct. |
---|
66 | // |
---|
67 | #define __OGRE_SIMD_ALIGN_STACK() \ |
---|
68 | { \ |
---|
69 | /* Use alloca to allocate some memory on the stack. */ \ |
---|
70 | /* This alerts gcc that something funny is going on, */ \ |
---|
71 | /* so that it does not omit the frame pointer etc. */ \ |
---|
72 | (void)__builtin_alloca(16); \ |
---|
73 | /* Now align the stack pointer */ \ |
---|
74 | __asm__ __volatile__ ("andl $-16, %esp"); \ |
---|
75 | } |
---|
76 | |
---|
77 | #elif defined(_MSC_VER) |
---|
78 | // Fortunately, MSVC will align the stack automatically |
---|
79 | |
---|
80 | #endif |
---|
81 | |
---|
82 | |
---|
83 | // Additional platform-dependent header files and declares. |
---|
84 | // |
---|
85 | // NOTE: Should be sync with __OGRE_HAVE_SSE macro. |
---|
86 | // |
---|
87 | |
---|
88 | #if OGRE_DOUBLE_PRECISION == 0 && OGRE_CPU == OGRE_CPU_X86 |
---|
89 | |
---|
90 | #if OGRE_COMPILER == OGRE_COMPILER_MSVC || defined(__INTEL_COMPILER) |
---|
91 | #include "OgreNoMemoryMacros.h" |
---|
92 | #include <xmmintrin.h> |
---|
93 | #include "OgreMemoryMacros.h" |
---|
94 | |
---|
95 | #elif OGRE_COMPILER == OGRE_COMPILER_GNUC |
---|
96 | // Don't define ourself version SSE intrinsics if "xmmintrin.h" already included. |
---|
97 | // |
---|
98 | // Note: gcc in some platform already included "xmmintrin.h" for some reason. |
---|
99 | // I pick up macro _XMMINTRIN_H_INCLUDED here which based on the "xmmintrin.h" |
---|
100 | // comes with cygwin gcc 3.4.4, guess it should be solved duplicate definition |
---|
101 | // problem on gcc for x86. |
---|
102 | // |
---|
103 | #if !defined(_XMMINTRIN_H_INCLUDED) |
---|
104 | |
---|
105 | // Simulate VC/ICC intrinsics. Only used intrinsics are declared here. |
---|
106 | |
---|
107 | typedef float __m128 __attribute__ ((mode(V4SF),aligned(16))); |
---|
108 | typedef int __m64 __attribute__ ((mode(V2SI))); |
---|
109 | |
---|
110 | // Macro for declare intrinsic routines always inline even if in debug build |
---|
111 | #define __ALWAYS_INLINE FORCEINLINE __attribute__ ((__always_inline__)) |
---|
112 | |
---|
113 | // Shuffle instruction must be declare as macro |
---|
114 | |
---|
115 | #define _MM_SHUFFLE(fp3,fp2,fp1,fp0) \ |
---|
116 | (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) |
---|
117 | |
---|
118 | #define _mm_shuffle_ps(a, b, imm8) __extension__ \ |
---|
119 | ({ \ |
---|
120 | __m128 result; \ |
---|
121 | __asm__("shufps %3, %2, %0" : "=x" (result) : "0" (a), "xm" (b), "N" (imm8)); \ |
---|
122 | result; \ |
---|
123 | }) |
---|
124 | |
---|
125 | |
---|
126 | // Load/store instructions |
---|
127 | |
---|
128 | #define __MM_DECL_LD(name, instruction, type) \ |
---|
129 | static __ALWAYS_INLINE __m128 _mm_##name(const type *addr) \ |
---|
130 | { \ |
---|
131 | __m128 result; \ |
---|
132 | __asm__( #instruction " %1, %0" : "=x" (result) : "m" (*addr)); \ |
---|
133 | return result; \ |
---|
134 | } |
---|
135 | |
---|
136 | #define __MM_DECL_LD2(name, instruction, type) \ |
---|
137 | static __ALWAYS_INLINE __m128 _mm_##name(__m128 val, const type *addr) \ |
---|
138 | { \ |
---|
139 | __m128 result; \ |
---|
140 | __asm__( #instruction " %2, %0" : "=x" (result) : "0"(val), "m" (*addr)); \ |
---|
141 | return result; \ |
---|
142 | } |
---|
143 | |
---|
144 | #define __MM_DECL_ST(name, instruction, type) \ |
---|
145 | static __ALWAYS_INLINE void _mm_##name(type *addr, __m128 val) \ |
---|
146 | { \ |
---|
147 | __asm__( #instruction " %1, %0" : "=m" (*addr) : "x" (val)); \ |
---|
148 | } |
---|
149 | |
---|
150 | __MM_DECL_LD(loadu_ps, movups, float) |
---|
151 | __MM_DECL_ST(storeu_ps, movups, float) |
---|
152 | |
---|
153 | __MM_DECL_LD(load_ss, movss, float) |
---|
154 | __MM_DECL_ST(store_ss, movss, float) |
---|
155 | |
---|
156 | __MM_DECL_ST(storel_pi, movlps, __m64) |
---|
157 | __MM_DECL_ST(storeh_pi, movhps, __m64) |
---|
158 | __MM_DECL_LD2(loadl_pi, movlps, __m64) |
---|
159 | __MM_DECL_LD2(loadh_pi, movhps, __m64) |
---|
160 | |
---|
161 | #undef __MM_DECL_LD |
---|
162 | #undef __MM_DECL_LD2 |
---|
163 | #undef __MM_DECL_ST |
---|
164 | |
---|
165 | // Two operand instructions |
---|
166 | |
---|
167 | #define __MM_DECL_OP2(name, instruction, constraint) \ |
---|
168 | static __ALWAYS_INLINE __m128 _mm_##name(__m128 a, __m128 b) \ |
---|
169 | { \ |
---|
170 | __m128 result; \ |
---|
171 | __asm__( #instruction " %2, %0" : "=x" (result) : "0" (a), #constraint (b)); \ |
---|
172 | return result; \ |
---|
173 | } |
---|
174 | |
---|
175 | __MM_DECL_OP2(add_ps, addps, xm) |
---|
176 | __MM_DECL_OP2(add_ss, addss, xm) |
---|
177 | __MM_DECL_OP2(sub_ps, subps, xm) |
---|
178 | __MM_DECL_OP2(sub_ss, subss, xm) |
---|
179 | __MM_DECL_OP2(mul_ps, mulps, xm) |
---|
180 | __MM_DECL_OP2(mul_ss, mulss, xm) |
---|
181 | |
---|
182 | __MM_DECL_OP2(xor_ps, xorps, xm) |
---|
183 | |
---|
184 | __MM_DECL_OP2(unpacklo_ps, unpcklps, xm) |
---|
185 | __MM_DECL_OP2(unpackhi_ps, unpckhps, xm) |
---|
186 | |
---|
187 | __MM_DECL_OP2(movehl_ps, movhlps, x) |
---|
188 | __MM_DECL_OP2(movelh_ps, movlhps, x) |
---|
189 | |
---|
190 | __MM_DECL_OP2(cmpnle_ps, cmpnleps, xm) |
---|
191 | |
---|
192 | #undef __MM_DECL_OP2 |
---|
193 | |
---|
194 | // Other used instructions |
---|
195 | |
---|
196 | static __ALWAYS_INLINE __m128 _mm_load_ps1(const float *addr) |
---|
197 | { |
---|
198 | __m128 tmp = _mm_load_ss(addr); |
---|
199 | return _mm_shuffle_ps(tmp, tmp, 0); |
---|
200 | } |
---|
201 | |
---|
202 | static __ALWAYS_INLINE __m128 _mm_setzero_ps(void) |
---|
203 | { |
---|
204 | __m128 result; |
---|
205 | __asm__("xorps %0, %0" : "=x" (result)); |
---|
206 | return result; |
---|
207 | } |
---|
208 | |
---|
209 | static __ALWAYS_INLINE __m128 _mm_rsqrt_ps(__m128 val) |
---|
210 | { |
---|
211 | __m128 result; |
---|
212 | __asm__("rsqrtps %1, %0" : "=x" (result) : "xm" (val)); |
---|
213 | //__asm__("rsqrtps %0, %0" : "=x" (result) : "0" (val)); |
---|
214 | return result; |
---|
215 | } |
---|
216 | |
---|
217 | static __ALWAYS_INLINE int _mm_movemask_ps(__m128 val) |
---|
218 | { |
---|
219 | int result; |
---|
220 | __asm__("movmskps %1, %0" : "=r" (result) : "x" (val)); |
---|
221 | return result; |
---|
222 | } |
---|
223 | |
---|
224 | #endif // !defined(_XMMINTRIN_H_INCLUDED) |
---|
225 | |
---|
226 | #endif // OGRE_COMPILER == OGRE_COMPILER_GNUC |
---|
227 | |
---|
228 | #endif // OGRE_DOUBLE_PRECISION == 0 && OGRE_CPU == OGRE_CPU_X86 |
---|
229 | |
---|
230 | |
---|
231 | |
---|
232 | //--------------------------------------------------------------------- |
---|
233 | // SIMD macros and helpers |
---|
234 | //--------------------------------------------------------------------- |
---|
235 | |
---|
236 | |
---|
237 | namespace Ogre { |
---|
238 | |
---|
239 | #if __OGRE_HAVE_SSE |
---|
240 | |
---|
241 | /** Macro __MM_RSQRT_PS calculate square root, which should be used for |
---|
242 | normalise normals only. It might be use NewtonRaphson reciprocal square |
---|
243 | root for high precision, or use SSE rsqrt instruction directly, based |
---|
244 | on profile to pick up perfect one. |
---|
245 | @note: |
---|
246 | Prefer to never use NewtonRaphson reciprocal square root at all, since |
---|
247 | speed test indicate performance loss 10% for unrolled version, and loss |
---|
248 | %25 for general version (P4 3.0G HT). A slight loss in precision not |
---|
249 | that important in case of normalise normals. |
---|
250 | */ |
---|
251 | #if 1 |
---|
252 | #define __MM_RSQRT_PS(x) _mm_rsqrt_ps(x) |
---|
253 | #else |
---|
254 | #define __MM_RSQRT_PS(x) __mm_rsqrt_nr_ps(x) // Implemented below |
---|
255 | #endif |
---|
256 | |
---|
257 | /** Performing the transpose of a 4x4 matrix of single precision floating |
---|
258 | point values. |
---|
259 | Arguments r0, r1, r2, and r3 are __m128 values whose elements |
---|
260 | form the corresponding rows of a 4x4 matrix. |
---|
261 | The matrix transpose is returned in arguments r0, r1, r2, and |
---|
262 | r3 where r0 now holds column 0 of the original matrix, r1 now |
---|
263 | holds column 1 of the original matrix, etc. |
---|
264 | */ |
---|
265 | #define __MM_TRANSPOSE4x4_PS(r0, r1, r2, r3) \ |
---|
266 | { \ |
---|
267 | __m128 t3, t2, t1, t0; \ |
---|
268 | \ |
---|
269 | /* r00 r01 r02 r03 */ \ |
---|
270 | /* r10 r11 r12 r13 */ \ |
---|
271 | /* r20 r21 r22 r23 */ \ |
---|
272 | /* r30 r31 r32 r33 */ \ |
---|
273 | \ |
---|
274 | t0 = _mm_unpacklo_ps(r0, r1); /* r00 r10 r01 r11 */ \ |
---|
275 | t2 = _mm_unpackhi_ps(r0, r1); /* r02 r12 r03 r13 */ \ |
---|
276 | t1 = _mm_unpacklo_ps(r2, r3); /* r20 r30 r21 r31 */ \ |
---|
277 | t3 = _mm_unpackhi_ps(r2, r3); /* r22 r32 r23 r33 */ \ |
---|
278 | \ |
---|
279 | r0 = _mm_movelh_ps(t0, t1); /* r00 r10 r20 r30 */ \ |
---|
280 | r1 = _mm_movehl_ps(t1, t0); /* r01 r11 r21 r31 */ \ |
---|
281 | r2 = _mm_movelh_ps(t2, t3); /* r02 r12 r22 r32 */ \ |
---|
282 | r3 = _mm_movehl_ps(t3, t2); /* r03 r13 r23 r33 */ \ |
---|
283 | } |
---|
284 | |
---|
285 | /** Performing the transpose of a continuous stored rows of a 4x3 matrix to |
---|
286 | a 3x4 matrix of single precision floating point values. |
---|
287 | Arguments v0, v1, and v2 are __m128 values whose elements form the |
---|
288 | corresponding continuous stored rows of a 4x3 matrix. |
---|
289 | The matrix transpose is returned in arguments v0, v1, and v2, where |
---|
290 | v0 now holds column 0 of the original matrix, v1 now holds column 1 |
---|
291 | of the original matrix, etc. |
---|
292 | */ |
---|
293 | #define __MM_TRANSPOSE4x3_PS(v0, v1, v2) \ |
---|
294 | { \ |
---|
295 | __m128 t0, t1, t2; \ |
---|
296 | \ |
---|
297 | /* r00 r01 r02 r10 */ \ |
---|
298 | /* r11 r12 r20 r21 */ \ |
---|
299 | /* r22 r30 r31 r32 */ \ |
---|
300 | \ |
---|
301 | t0 = _mm_shuffle_ps(v0, v2, _MM_SHUFFLE(3,0,3,0)); /* r00 r10 r22 r32 */ \ |
---|
302 | t1 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(1,0,2,1)); /* r01 r02 r11 r12 */ \ |
---|
303 | t2 = _mm_shuffle_ps(v1, v2, _MM_SHUFFLE(2,1,3,2)); /* r20 r21 r30 r31 */ \ |
---|
304 | \ |
---|
305 | v0 = _mm_shuffle_ps(t0, t2, _MM_SHUFFLE(2,0,1,0)); /* r00 r10 r20 r30 */ \ |
---|
306 | v1 = _mm_shuffle_ps(t1, t2, _MM_SHUFFLE(3,1,2,0)); /* r01 r11 r21 r31 */ \ |
---|
307 | v2 = _mm_shuffle_ps(t1, t0, _MM_SHUFFLE(3,2,3,1)); /* r02 r12 r22 r32 */ \ |
---|
308 | } |
---|
309 | |
---|
310 | /** Performing the transpose of a 3x4 matrix to a continuous stored rows of |
---|
311 | a 4x3 matrix of single precision floating point values. |
---|
312 | Arguments v0, v1, and v2 are __m128 values whose elements form the |
---|
313 | corresponding columns of a 3x4 matrix. |
---|
314 | The matrix transpose is returned in arguments v0, v1, and v2, as a |
---|
315 | continuous stored rows of a 4x3 matrix. |
---|
316 | */ |
---|
317 | #define __MM_TRANSPOSE3x4_PS(v0, v1, v2) \ |
---|
318 | { \ |
---|
319 | __m128 t0, t1, t2; \ |
---|
320 | \ |
---|
321 | /* r00 r10 r20 r30 */ \ |
---|
322 | /* r01 r11 r21 r31 */ \ |
---|
323 | /* r02 r12 r22 r32 */ \ |
---|
324 | \ |
---|
325 | t0 = _mm_shuffle_ps(v0, v2, _MM_SHUFFLE(2,0,3,1)); /* r10 r30 r02 r22 */ \ |
---|
326 | t1 = _mm_shuffle_ps(v1, v2, _MM_SHUFFLE(3,1,3,1)); /* r11 r31 r12 r32 */ \ |
---|
327 | t2 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(2,0,2,0)); /* r00 r20 r01 r21 */ \ |
---|
328 | \ |
---|
329 | v0 = _mm_shuffle_ps(t2, t0, _MM_SHUFFLE(0,2,2,0)); /* r00 r01 r02 r10 */ \ |
---|
330 | v1 = _mm_shuffle_ps(t1, t2, _MM_SHUFFLE(3,1,2,0)); /* r11 r12 r20 r21 */ \ |
---|
331 | v2 = _mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,1,3)); /* r22 r30 r31 r32 */ \ |
---|
332 | } |
---|
333 | |
---|
334 | /** Fill vector of single precision floating point with selected value. |
---|
335 | Argument 'fp' is a digit[0123] that represents the fp of argument 'v'. |
---|
336 | */ |
---|
337 | #define __MM_SELECT(v, fp) \ |
---|
338 | _mm_shuffle_ps((v), (v), _MM_SHUFFLE((fp),(fp),(fp),(fp))) |
---|
339 | |
---|
340 | /// Accumulate four vector of single precision floating point values. |
---|
341 | #define __MM_ACCUM4_PS(a, b, c, d) \ |
---|
342 | _mm_add_ps(_mm_add_ps(a, b), _mm_add_ps(c, d)) |
---|
343 | |
---|
344 | /** Performing dot-product between two of four vector of single precision |
---|
345 | floating point values. |
---|
346 | */ |
---|
347 | #define __MM_DOT4x4_PS(a0, a1, a2, a3, b0, b1, b2, b3) \ |
---|
348 | __MM_ACCUM4_PS(_mm_mul_ps(a0, b0), _mm_mul_ps(a1, b1), _mm_mul_ps(a2, b2), _mm_mul_ps(a3, b3)) |
---|
349 | |
---|
350 | /** Performing dot-product between four vector and three vector of single |
---|
351 | precision floating point values. |
---|
352 | */ |
---|
353 | #define __MM_DOT4x3_PS(r0, r1, r2, r3, v0, v1, v2) \ |
---|
354 | __MM_ACCUM4_PS(_mm_mul_ps(r0, v0), _mm_mul_ps(r1, v1), _mm_mul_ps(r2, v2), r3) |
---|
355 | |
---|
356 | /// Accumulate three vector of single precision floating point values. |
---|
357 | #define __MM_ACCUM3_PS(a, b, c) \ |
---|
358 | _mm_add_ps(_mm_add_ps(a, b), c) |
---|
359 | |
---|
360 | /** Performing dot-product between two of three vector of single precision |
---|
361 | floating point values. |
---|
362 | */ |
---|
363 | #define __MM_DOT3x3_PS(r0, r1, r2, v0, v1, v2) \ |
---|
364 | __MM_ACCUM3_PS(_mm_mul_ps(r0, v0), _mm_mul_ps(r1, v1), _mm_mul_ps(r2, v2)) |
---|
365 | |
---|
366 | /// Calculate multiply of two vector and plus another vector |
---|
367 | #define __MM_MADD_PS(a, b, c) \ |
---|
368 | _mm_add_ps(_mm_mul_ps(a, b), c) |
---|
369 | |
---|
370 | /// Linear interpolation |
---|
371 | #define __MM_LERP_PS(t, a, b) \ |
---|
372 | __MM_MADD_PS(_mm_sub_ps(b, a), t, a) |
---|
373 | |
---|
374 | /// Calculate multiply of two single floating value and plus another floating value |
---|
375 | #define __MM_MADD_SS(a, b, c) \ |
---|
376 | _mm_add_ss(_mm_mul_ss(a, b), c) |
---|
377 | |
---|
378 | /// Linear interpolation |
---|
379 | #define __MM_LERP_SS(t, a, b) \ |
---|
380 | __MM_MADD_SS(_mm_sub_ss(b, a), t, a) |
---|
381 | |
---|
382 | /// Same as _mm_load_ps, but can help VC generate more optimised code. |
---|
383 | #define __MM_LOAD_PS(p) \ |
---|
384 | (*(__m128*)(p)) |
---|
385 | |
---|
386 | /// Same as _mm_store_ps, but can help VC generate more optimised code. |
---|
387 | #define __MM_STORE_PS(p, v) \ |
---|
388 | (*(__m128*)(p) = (v)) |
---|
389 | |
---|
390 | |
---|
391 | /** Helper to load/store SSE data based on whether or not aligned. |
---|
392 | */ |
---|
393 | template <bool aligned = false> |
---|
394 | struct SSEMemoryAccessor |
---|
395 | { |
---|
396 | static FORCEINLINE __m128 load(const float *p) |
---|
397 | { |
---|
398 | return _mm_loadu_ps(p); |
---|
399 | } |
---|
400 | static FORCEINLINE void store(float *p, const __m128& v) |
---|
401 | { |
---|
402 | _mm_storeu_ps(p, v); |
---|
403 | } |
---|
404 | }; |
---|
405 | // Special aligned accessor |
---|
406 | template <> |
---|
407 | struct SSEMemoryAccessor<true> |
---|
408 | { |
---|
409 | static FORCEINLINE const __m128& load(const float *p) |
---|
410 | { |
---|
411 | return __MM_LOAD_PS(p); |
---|
412 | } |
---|
413 | static FORCEINLINE void store(float *p, const __m128& v) |
---|
414 | { |
---|
415 | __MM_STORE_PS(p, v); |
---|
416 | } |
---|
417 | }; |
---|
418 | |
---|
419 | /** Check whether or not the given pointer perfect aligned for SSE. |
---|
420 | */ |
---|
421 | static FORCEINLINE bool _isAlignedForSSE(const void *p) |
---|
422 | { |
---|
423 | return (((size_t)p) & 15) == 0; |
---|
424 | } |
---|
425 | |
---|
426 | /** Calculate NewtonRaphson Reciprocal Square Root with formula: |
---|
427 | 0.5 * rsqrt(x) * (3 - x * rsqrt(x)^2) |
---|
428 | */ |
---|
429 | static FORCEINLINE __m128 __mm_rsqrt_nr_ps(const __m128& x) |
---|
430 | { |
---|
431 | static const __m128 v0pt5 = { 0.5f, 0.5f, 0.5f, 0.5f }; |
---|
432 | static const __m128 v3pt0 = { 3.0f, 3.0f, 3.0f, 3.0f }; |
---|
433 | __m128 t = _mm_rsqrt_ps(x); |
---|
434 | return _mm_mul_ps(_mm_mul_ps(v0pt5, t), |
---|
435 | _mm_sub_ps(v3pt0, _mm_mul_ps(_mm_mul_ps(x, t), t))); |
---|
436 | } |
---|
437 | |
---|
438 | // Macro to check the stack aligned for SSE |
---|
439 | #if OGRE_DEBUG_MODE |
---|
440 | #define __OGRE_CHECK_STACK_ALIGNED_FOR_SSE() \ |
---|
441 | { \ |
---|
442 | __m128 test; \ |
---|
443 | assert(_isAlignedForSSE(&test)); \ |
---|
444 | } |
---|
445 | |
---|
446 | #else // !OGRE_DEBUG_MODE |
---|
447 | #define __OGRE_CHECK_STACK_ALIGNED_FOR_SSE() |
---|
448 | |
---|
449 | #endif // OGRE_DEBUG_MODE |
---|
450 | |
---|
451 | |
---|
452 | #endif // __OGRE_HAVE_SSE |
---|
453 | |
---|
454 | } |
---|
455 | |
---|
456 | #endif // __SIMDHelper_H__ |
---|