[1] | 1 | /* |
---|
| 2 | ----------------------------------------------------------------------------- |
---|
| 3 | This source file is part of OGRE |
---|
| 4 | (Object-oriented Graphics Rendering Engine) |
---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
---|
| 6 | |
---|
| 7 | Copyright (c) 2006 Torus Knot Software Ltd |
---|
| 8 | Also see acknowledgements in Readme.html |
---|
| 9 | |
---|
| 10 | This program is free software; you can redistribute it and/or modify it under |
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
| 13 | version. |
---|
| 14 | |
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
| 18 | |
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
| 23 | ----------------------------------------------------------------------------- |
---|
| 24 | */ |
---|
| 25 | |
---|
| 26 | #include "OgreStableHeaders.h" |
---|
| 27 | #include "OgreCommon.h" |
---|
| 28 | #include "OgreSceneManager.h" |
---|
| 29 | #include "OgreLight.h" |
---|
| 30 | #include "OgreShadowCameraSetupPlaneOptimal.h" |
---|
| 31 | #include "OgreNumerics.h" |
---|
| 32 | #include "OgreCamera.h" |
---|
| 33 | #include "OgreViewport.h" |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | namespace Ogre |
---|
| 37 | { |
---|
| 38 | // -------------------------------------------------------------------- |
---|
| 39 | Matrix4 PlaneOptimalShadowCameraSetup::computeConstrainedProjection( |
---|
| 40 | const Vector4& pinhole, |
---|
| 41 | const std::vector<Vector4>& fpoint, |
---|
| 42 | const std::vector<Vector2>& constraint) const |
---|
| 43 | { |
---|
| 44 | // NOTE: will assume the z coordinates should be decided such that |
---|
| 45 | // the first 3 points (in fpoint) will have post projective |
---|
| 46 | // z coordinates of about +1 and the 4th (in fpoint) will have a |
---|
| 47 | // post projective z coordinate of about -1. |
---|
| 48 | |
---|
| 49 | // TODO: could use SVD to avoid arbitrarily choosing one |
---|
| 50 | // matrix element to be 1.0 (and thereby fix the scale). |
---|
| 51 | |
---|
| 52 | Matrix4 ret; |
---|
| 53 | int i; |
---|
| 54 | bool incrPrecision = false; // use to control numerical solving |
---|
| 55 | |
---|
| 56 | if(fpoint.size() < 4 || constraint.size() < 4) { |
---|
| 57 | return Matrix4::IDENTITY; |
---|
| 58 | } |
---|
| 59 | |
---|
| 60 | // allocate memory |
---|
| 61 | PreciseReal **mat = NULL; |
---|
| 62 | PreciseReal **backmat = NULL; |
---|
| 63 | { |
---|
| 64 | mat = new PreciseReal*[11]; |
---|
| 65 | if(incrPrecision) |
---|
| 66 | backmat = new PreciseReal*[11]; |
---|
| 67 | for(i=0; i<11; i++) |
---|
| 68 | { |
---|
| 69 | mat[i] = new PreciseReal[11]; |
---|
| 70 | if(incrPrecision) |
---|
| 71 | backmat[i] = new PreciseReal[11]; |
---|
| 72 | } |
---|
| 73 | } |
---|
| 74 | |
---|
| 75 | // set up linear system to solve for all rows of projective matrix |
---|
| 76 | // except for the 3rd which corresponds to mapping of z values |
---|
| 77 | |
---|
| 78 | // we choose a nonzero element of the last row to set to the arbitrary |
---|
| 79 | // constant 1.0. |
---|
| 80 | int nzind = 3; |
---|
| 81 | PreciseReal col[11]; |
---|
| 82 | PreciseReal backcol[11]; |
---|
| 83 | |
---|
| 84 | // fill in light position constraints |
---|
| 85 | mat[0][0] = pinhole.x; |
---|
| 86 | mat[0][1] = pinhole.y; |
---|
| 87 | mat[0][2] = pinhole.z; |
---|
| 88 | mat[0][3] = pinhole.w; |
---|
| 89 | for(i=4; i<11; i++) |
---|
| 90 | mat[0][i] = 0.0; |
---|
| 91 | col[0] = 0.0; |
---|
| 92 | |
---|
| 93 | for(i=0; i<11; i++) |
---|
| 94 | mat[1][i] = 0.0; |
---|
| 95 | mat[1][4] = pinhole.x; |
---|
| 96 | mat[1][5] = pinhole.y; |
---|
| 97 | mat[1][6] = pinhole.z; |
---|
| 98 | mat[1][7] = pinhole.w; |
---|
| 99 | col[1] = 0.0; |
---|
| 100 | |
---|
| 101 | PreciseReal larr[4]; |
---|
| 102 | larr[0] = pinhole.x; |
---|
| 103 | larr[1] = pinhole.y; |
---|
| 104 | larr[2] = pinhole.z; |
---|
| 105 | larr[3] = pinhole.w; |
---|
| 106 | for(i=0; i<8; i++) |
---|
| 107 | mat[2][i] = 0.0; |
---|
| 108 | int ind = 8; |
---|
| 109 | for(i=0; i<4; i++) |
---|
| 110 | { |
---|
| 111 | if(nzind == i) |
---|
| 112 | continue; |
---|
| 113 | mat[2][ind++] = larr[i]; |
---|
| 114 | } |
---|
| 115 | col[2] = -larr[nzind]; |
---|
| 116 | |
---|
| 117 | // fill in all the other constraints |
---|
| 118 | int row=3; |
---|
| 119 | for(i=0; i<4; i++) |
---|
| 120 | { |
---|
| 121 | int j; |
---|
| 122 | larr[0] = fpoint[i].x; |
---|
| 123 | larr[1] = fpoint[i].y; |
---|
| 124 | larr[2] = fpoint[i].z; |
---|
| 125 | larr[3] = fpoint[i].w; |
---|
| 126 | |
---|
| 127 | // lexel s coordinate constraint |
---|
| 128 | for(j=0; j<4; j++) |
---|
| 129 | mat[row][j] = larr[j]; |
---|
| 130 | for(j=4; j<8; j++) |
---|
| 131 | mat[row][j] = 0.0; |
---|
| 132 | ind=8; |
---|
| 133 | for(j=0; j<4; j++) |
---|
| 134 | { |
---|
| 135 | if(nzind==j) |
---|
| 136 | continue; |
---|
| 137 | mat[row][ind++] = larr[j] * (-constraint[i].x); |
---|
| 138 | } |
---|
| 139 | col[row] = larr[nzind] * constraint[i].x; |
---|
| 140 | ++row; |
---|
| 141 | |
---|
| 142 | // lexel t coordinate constraint |
---|
| 143 | for(j=0; j<4; j++) |
---|
| 144 | mat[row][j] = 0.0; |
---|
| 145 | for(j=4; j<8; j++) |
---|
| 146 | mat[row][j] = larr[j-4]; |
---|
| 147 | |
---|
| 148 | ind=8; |
---|
| 149 | for(j=0; j<4; j++) |
---|
| 150 | { |
---|
| 151 | if(nzind==j) |
---|
| 152 | continue; |
---|
| 153 | mat[row][ind++] = larr[j] * (-constraint[i].y); |
---|
| 154 | } |
---|
| 155 | col[row] = larr[nzind] * constraint[i].y; |
---|
| 156 | ++row; |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | // copy the matrix and vector for later computation |
---|
| 160 | if(incrPrecision) |
---|
| 161 | { |
---|
| 162 | for (i=0; i<11; i++) |
---|
| 163 | { |
---|
| 164 | for(int j=0; j<11; j++) |
---|
| 165 | backmat[i][j] = mat[i][j]; |
---|
| 166 | backcol[i] = col[i]; |
---|
| 167 | } |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | // solve for the matrix elements |
---|
| 171 | if(!NumericSolver::solveNxNLinearSysDestr(11, mat, col)) |
---|
| 172 | { |
---|
| 173 | // error solving for projective matrix (rows 1,2,4) |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | // get a little more precision |
---|
| 177 | if(incrPrecision) |
---|
| 178 | { |
---|
| 179 | for (int k=0; k<3; k++) |
---|
| 180 | { |
---|
| 181 | PreciseReal nvec[11]; |
---|
| 182 | for(i=0; i<11; i++) |
---|
| 183 | { |
---|
| 184 | int j; |
---|
| 185 | nvec[i] = backmat[i][0] * col[0]; |
---|
| 186 | mat[i][0] = backmat[i][0]; |
---|
| 187 | for(j=1; j<11; j++) |
---|
| 188 | { |
---|
| 189 | nvec[i] += backmat[i][j] * col[j]; |
---|
| 190 | mat[i][j] = backmat[i][j]; |
---|
| 191 | } |
---|
| 192 | nvec[i] -= backcol[i]; |
---|
| 193 | } |
---|
| 194 | if(!NumericSolver::solveNxNLinearSysDestr(11, mat, nvec)) |
---|
| 195 | { |
---|
| 196 | // error solving for increased precision rows 1,2,4 |
---|
| 197 | } |
---|
| 198 | for(i=0; i<11; i++) |
---|
| 199 | col[i] -= nvec[i]; |
---|
| 200 | } |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | PreciseReal row4[4]; |
---|
| 204 | ind = 8; |
---|
| 205 | for(i=0; i<4; i++) |
---|
| 206 | { |
---|
| 207 | if (i == nzind) |
---|
| 208 | row4[i] = 1.0; |
---|
| 209 | else |
---|
| 210 | row4[i] = col[ind++]; |
---|
| 211 | } |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | // now solve for the 3rd row which affects depth precision |
---|
| 215 | PreciseReal zrow[4]; |
---|
| 216 | |
---|
| 217 | // we want the affine skew such that isoplanes of constant depth are parallel to |
---|
| 218 | // the world plane of interest |
---|
| 219 | // NOTE: recall we perturbed the last fpoint off the plane, so we'll again modify |
---|
| 220 | // this one since we want 3 points on the plane = far plane, and 1 on the near plane |
---|
| 221 | int nearind = 3; |
---|
| 222 | for(i=0; i<3; i++) |
---|
| 223 | { |
---|
| 224 | mat[i][0] = fpoint[i].x; |
---|
| 225 | mat[i][1] = fpoint[i].y; |
---|
| 226 | mat[i][2] = fpoint[i].z; |
---|
| 227 | mat[i][3] = 1.0; |
---|
| 228 | zrow[i] = (row4[0] * fpoint[i].x + |
---|
| 229 | row4[1] * fpoint[i].y + |
---|
| 230 | row4[2] * fpoint[i].z + |
---|
| 231 | row4[3]) * 0.99 ; |
---|
| 232 | } |
---|
| 233 | mat[3][0] = fpoint[nearind].x; |
---|
| 234 | mat[3][1] = fpoint[nearind].y; |
---|
| 235 | mat[3][2] = fpoint[nearind].z; |
---|
| 236 | mat[3][3] = 1.0; |
---|
| 237 | zrow[3] = -row4[0] * fpoint[nearind].x - |
---|
| 238 | row4[1] * fpoint[nearind].y - |
---|
| 239 | row4[2] * fpoint[nearind].z - |
---|
| 240 | row4[3] ; |
---|
| 241 | |
---|
| 242 | // solve for the z row of the matrix |
---|
| 243 | if(!NumericSolver::solveNxNLinearSysDestr(4, mat, zrow)) |
---|
| 244 | { |
---|
| 245 | // error solving for projective matrix (row 3) |
---|
| 246 | } |
---|
| 247 | |
---|
| 248 | // set projective texture matrix |
---|
| 249 | ret = Matrix4( col[0], col[1], col[2], col[3], |
---|
| 250 | col[4], col[5], col[6], col[7], |
---|
| 251 | zrow[0], zrow[1], zrow[2], zrow[3], |
---|
| 252 | row4[0], row4[1], row4[2], row4[3] ); |
---|
| 253 | |
---|
| 254 | |
---|
| 255 | // check for clip |
---|
| 256 | Vector4 testCoord = ret * fpoint[0]; |
---|
| 257 | if(testCoord.w < 0.0) |
---|
| 258 | ret = ret * (-1.0); |
---|
| 259 | |
---|
| 260 | // free memory |
---|
| 261 | for (i=0; i<11; i++) |
---|
| 262 | { |
---|
| 263 | if (mat[i]) |
---|
| 264 | delete [] mat[i]; |
---|
| 265 | if (incrPrecision) |
---|
| 266 | delete [] backmat[i]; |
---|
| 267 | } |
---|
| 268 | delete [] mat; |
---|
| 269 | if(incrPrecision) |
---|
| 270 | delete [] backmat; |
---|
| 271 | |
---|
| 272 | return ret; |
---|
| 273 | |
---|
| 274 | } |
---|
| 275 | |
---|
| 276 | // -------------------------------------------------------------------- |
---|
| 277 | |
---|
| 278 | /// Construct object to consider a specified plane of interest |
---|
| 279 | PlaneOptimalShadowCameraSetup::PlaneOptimalShadowCameraSetup(MovablePlane* plane) |
---|
| 280 | { |
---|
| 281 | m_plane = plane; |
---|
| 282 | } |
---|
| 283 | |
---|
| 284 | /// Destructor |
---|
| 285 | PlaneOptimalShadowCameraSetup::~PlaneOptimalShadowCameraSetup() {} |
---|
| 286 | |
---|
| 287 | /// Implements the plane optimal shadow camera setup algorithm |
---|
| 288 | void PlaneOptimalShadowCameraSetup::getShadowCamera (const SceneManager *sm, const Camera *cam, |
---|
| 289 | const Viewport *vp, const Light *light, Camera *texCam) const |
---|
| 290 | { |
---|
| 291 | // get the plane transformed by the parent node(s) |
---|
| 292 | // Also, make sure the plane is normalized |
---|
| 293 | Plane worldPlane = m_plane->_getDerivedPlane(); |
---|
| 294 | worldPlane.normalise(); |
---|
| 295 | |
---|
| 296 | // get camera's projection matrix |
---|
| 297 | Matrix4 camProjection = cam->getProjectionMatrix() * cam->getViewMatrix(); |
---|
| 298 | |
---|
| 299 | // get the world points to constrain |
---|
| 300 | std::vector<Vector4> vhull; |
---|
| 301 | cam->forwardIntersect(worldPlane, &vhull); |
---|
| 302 | if (vhull.size() < 4) |
---|
| 303 | return; |
---|
| 304 | |
---|
| 305 | // make sure the last point is a finite point (not point at infinity) |
---|
| 306 | if (vhull[3].w == 0.0) |
---|
| 307 | { |
---|
| 308 | int finiteIndex = -1; |
---|
| 309 | for (uint loopIndex = 0; loopIndex < vhull.size(); loopIndex++) |
---|
| 310 | { |
---|
| 311 | if (vhull[loopIndex].w != 0.0) |
---|
| 312 | { |
---|
| 313 | finiteIndex = loopIndex; |
---|
| 314 | break; |
---|
| 315 | } |
---|
| 316 | } |
---|
| 317 | if (finiteIndex == -1) |
---|
| 318 | { |
---|
| 319 | // there are no finite points, which means camera doesn't see plane of interest. |
---|
| 320 | // so we don't care what the shadow map matrix is |
---|
| 321 | // We'll map points off the shadow map so they aren't even stored |
---|
| 322 | Matrix4 crazyMat(0.0, 0.0, 0.0, 5.0, |
---|
| 323 | 0.0, 0.0, 0.0, 5.0, |
---|
| 324 | 0.0, 0.0, 0.0, 5.0, |
---|
| 325 | 0.0, 0.0, 0.0, 1.0); |
---|
| 326 | texCam->setCustomViewMatrix(true, Matrix4::IDENTITY); |
---|
| 327 | texCam->setCustomProjectionMatrix(true, crazyMat); |
---|
| 328 | return; |
---|
| 329 | } |
---|
| 330 | // swap finite point to last point |
---|
| 331 | std::swap(vhull[3], vhull[finiteIndex]); |
---|
| 332 | } |
---|
| 333 | vhull.resize(4); |
---|
| 334 | |
---|
| 335 | // get the post-projective coordinate constraints |
---|
| 336 | std::vector<Vector2> constraint; |
---|
| 337 | for (int i=0; i<4; i++) |
---|
| 338 | { |
---|
| 339 | Vector4 postProjPt = camProjection * vhull[i]; |
---|
| 340 | postProjPt *= 1.0 / postProjPt.w; |
---|
| 341 | constraint.push_back(Vector2(postProjPt.x, postProjPt.y)); |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | // perturb one point so we don't have coplanarity |
---|
| 345 | const Vector4& pinhole = light->getAs4DVector(); |
---|
| 346 | const Vector4& oldPt = vhull.back(); |
---|
| 347 | Vector4 newPt; |
---|
| 348 | if (pinhole.w == 0) |
---|
| 349 | { |
---|
| 350 | // It's directional light |
---|
| 351 | static const Real NEAR_SCALE = 100.0; |
---|
| 352 | newPt = oldPt + (pinhole * (cam->getNearClipDistance() * NEAR_SCALE)); |
---|
| 353 | } |
---|
| 354 | else |
---|
| 355 | { |
---|
| 356 | // It's point or spotlight |
---|
| 357 | Vector4 displacement = oldPt - pinhole; |
---|
| 358 | Vector3 displace3 = Vector3(displacement.x, displacement.y, displacement.z); |
---|
| 359 | Real dotProd = fabs(displace3.dotProduct(worldPlane.normal)); |
---|
| 360 | static const Real NEAR_FACTOR = 0.05; |
---|
| 361 | newPt = pinhole + (displacement * (cam->getNearClipDistance() * NEAR_FACTOR / dotProd)); |
---|
| 362 | } |
---|
| 363 | vhull.back() = newPt; |
---|
| 364 | |
---|
| 365 | // solve for the matrix that stabilizes the plane |
---|
| 366 | Matrix4 customMatrix = computeConstrainedProjection(pinhole, vhull, constraint); |
---|
| 367 | |
---|
| 368 | if (pinhole.w == 0) |
---|
| 369 | { |
---|
| 370 | // TODO: factor into view and projection pieces. |
---|
| 371 | // Note: In fact, it's unnecessary to factor into view and projection pieces, |
---|
| 372 | // but if we do, we will more according with academic requirement :) |
---|
| 373 | texCam->setCustomViewMatrix(true, Matrix4::IDENTITY); |
---|
| 374 | texCam->setCustomProjectionMatrix(true, customMatrix); |
---|
| 375 | return; |
---|
| 376 | } |
---|
| 377 | |
---|
| 378 | Vector3 tempPos = Vector3(pinhole.x, pinhole.y, pinhole.z); |
---|
| 379 | |
---|
| 380 | // factor into view and projection pieces |
---|
| 381 | Matrix4 translation(1.0, 0.0, 0.0, tempPos.x, |
---|
| 382 | 0.0, 1.0, 0.0, tempPos.y, |
---|
| 383 | 0.0, 0.0, 1.0, tempPos.z, |
---|
| 384 | 0.0, 0.0, 0.0, 1.0); |
---|
| 385 | Matrix4 invTranslation(1.0, 0.0, 0.0, -tempPos.x, |
---|
| 386 | 0.0, 1.0, 0.0, -tempPos.y, |
---|
| 387 | 0.0, 0.0, 1.0, -tempPos.z, |
---|
| 388 | 0.0, 0.0, 0.0, 1.0); |
---|
| 389 | Matrix4 tempMatrix = customMatrix * translation; |
---|
| 390 | Vector3 zRow(-tempMatrix[3][0], -tempMatrix[3][1], -tempMatrix[3][2]); |
---|
| 391 | zRow.normalise(); |
---|
| 392 | Vector3 up; |
---|
| 393 | if (zRow.y == 1.0) |
---|
| 394 | up = Vector3(1,0,0); |
---|
| 395 | else |
---|
| 396 | up = Vector3(0,1,0); |
---|
| 397 | Vector3 xDir = up.crossProduct(zRow); |
---|
| 398 | xDir.normalise(); |
---|
| 399 | up = zRow.crossProduct(xDir); |
---|
| 400 | Matrix4 rotation(xDir.x, up.x, zRow.x, 0.0, |
---|
| 401 | xDir.y, up.y, zRow.y, 0.0, |
---|
| 402 | xDir.z, up.z, zRow.z, 0.0, |
---|
| 403 | 0.0, 0.0, 0.0, 1.0 ); |
---|
| 404 | Matrix4 customProj = tempMatrix * rotation; |
---|
| 405 | Matrix4 customView = rotation.transpose() * invTranslation; |
---|
| 406 | // note: now customProj * (0,0,0,1)^t = (0, 0, k, 0)^t for k some constant |
---|
| 407 | // note: also customProj's 4th row is (0, 0, c, 0) for some negative c. |
---|
| 408 | |
---|
| 409 | |
---|
| 410 | // set the shadow map camera |
---|
| 411 | texCam->setCustomViewMatrix(true, customView); |
---|
| 412 | texCam->setCustomProjectionMatrix(true, customProj); |
---|
| 413 | } |
---|
| 414 | |
---|
| 415 | } |
---|
| 416 | |
---|