Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: downloads/PlugIns/BSPSceneManager/include/OgreBspNode.h @ 3

Last change on this file since 3 was 3, checked in by anonymous, 17 years ago

=update

File size: 10.4 KB
Line 
1/*
2-----------------------------------------------------------------------------
3This source file is part of OGRE
4    (Object-oriented Graphics Rendering Engine)
5For the latest info, see http://www.ogre3d.org/
6
7Copyright (c) 2000-2006 Torus Knot Software Ltd
8Also see acknowledgements in Readme.html
9
10This program is free software; you can redistribute it and/or modify it under
11the terms of the GNU Lesser General Public License as published by the Free Software
12Foundation; either version 2 of the License, or (at your option) any later
13version.
14
15This program is distributed in the hope that it will be useful, but WITHOUT
16ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
18
19You should have received a copy of the GNU Lesser General Public License along with
20this program; if not, write to the Free Software Foundation, Inc., 59 Temple
21Place - Suite 330, Boston, MA 02111-1307, USA, or go to
22http://www.gnu.org/copyleft/lesser.txt.
23
24You may alternatively use this source under the terms of a specific version of
25the OGRE Unrestricted License provided you have obtained such a license from
26Torus Knot Software Ltd.
27-----------------------------------------------------------------------------
28*/
29#ifndef _BspNode_H__
30#define _BspNode_H__
31
32#include "OgreBspPrerequisites.h"
33#include "OgrePlane.h"
34#include "OgreAxisAlignedBox.h"
35#include "OgreSceneQuery.h"
36
37namespace Ogre {
38
39    /** Encapsulates a node in a BSP tree.
40        A BSP tree represents space partitioned by planes . The space which is
41        partitioned is either the world (in the case of the root node) or the space derived
42        from their parent node. Each node can have elements which are in front or behind it, which are
43        it's children and these elements can either be further subdivided by planes,
44        or they can be undivided spaces or 'leaf nodes' - these are the nodes which actually contain
45        objects and world geometry.The leaves of the tree are the stopping point of any tree walking algorithm,
46        both for rendering and collision detection etc.</p>
47        Ogre chooses not to represent splitting nodes and leaves as separate structures, but to merge the two for simplicity
48        of the walking algorithm. If a node is a leaf, the isLeaf() method returns true and both getFront() and
49        getBack() return null pointers. If the node is a partitioning plane isLeaf() returns false and getFront()
50        and getBack() will return the corresponding BspNode objects.
51    */
52    class BspNode
53    {
54        friend class BspLevel;
55
56    public:
57        /** Constructor, only to be used by BspLevel. */
58        BspNode(BspLevel* owner, bool isLeaf);
59
60        BspNode();
61        ~BspNode();
62
63        /** Returns true if this node is a leaf (i.e. contains geometry) or false if it is a splitting plane.
64            A BspNode can either be a splitting plane (the typical representation of a BSP node) or an undivided
65            region contining geometry (a leaf node). Ogre represents both using the same class for simplicity
66            of tree walking. However it is important that you use this method to determine which type you are dealing
67            with, since certain methods are only supported with one of the subtypes. Details are given in the individual methods.
68            Note that I could have represented splitting / leaf nodes as a class hierarchy but the
69            virtual methods / run-time type identification would have a performance hit, and it would not make the
70            code much (any?) simpler anyway. I think this is a fair trade-off in this case.
71        */
72        bool isLeaf(void) const;
73
74        /** Returns a pointer to a BspNode containing the subspace on the positive side of the splitting plane.
75            This method should only be called on a splitting node, i.e. where isLeaf() returns false. Calling this
76            method on a leaf node will throw an exception.
77        */
78        BspNode* getFront(void) const;
79
80        /** Returns a pointer to a BspNode containing the subspace on the negative side of the splitting plane.
81            This method should only be called on a splitting node, i.e. where isLeaf() returns false. Calling this
82            method on a leaf node will throw an exception.
83        */
84        BspNode* getBack(void) const;
85
86        /** Determines which side of the splitting plane a worldspace point is.
87            This method should only be called on a splitting node, i.e. where isLeaf() returns false. Calling this
88            method on a leaf node will throw an exception.
89        */
90        Plane::Side getSide (const Vector3& point) const;
91
92        /** Gets the next node down in the tree, with the intention of
93            locating the leaf containing the given point.
94            This method should only be called on a splitting node, i.e. where isLeaf() returns false. Calling this
95            method on a leaf node will throw an exception.
96        */
97        BspNode* getNextNode(const Vector3& point) const;
98
99
100        /** Returns details of the plane which is used to subdivide the space of his node's children.
101            This method should only be called on a splitting node, i.e. where isLeaf() returns false. Calling this
102            method on a leaf node will throw an exception.
103        */
104        const Plane& getSplitPlane(void) const;
105
106        /** Returns the axis-aligned box which contains this node if it is a leaf.
107            This method should only be called on a leaf node. It returns a box which can be used in calls like
108            Camera::isVisible to determine if the leaf node is visible in the view.
109        */
110        const AxisAlignedBox& getBoundingBox(void) const;
111
112        /** Returns the number of faces contained in this leaf node.
113            Should only be called on a leaf node.
114        */
115        int getNumFaceGroups(void) const;
116        /** Returns the index to the face group index list for this leaf node.
117            The contents of this buffer is a list of indexes which point to the
118            actual face groups held in a central buffer in the BspLevel class (in
119            actual fact for efficency the indexes themselves are also held in a single
120            buffer in BspLevel too). The reason for this indirection is that the buffer
121            of indexes to face groups is organised in chunks relative to nodes, whilst the
122            main buffer of face groups may not be.
123            Should only be called on a leaf node.
124        */
125        int getFaceGroupStart(void) const;
126
127        /** Determines if the passed in node (must also be a leaf) is visible from this leaf.
128            Must only be called on a leaf node, and the parameter must also be a leaf node. If
129            this method returns true, then the leaf passed in is visible from this leaf.
130            Note that internally this uses the Potentially Visible Set (PVS) which is precalculated
131            and stored with the BSP level.
132        */
133        bool isLeafVisible(const BspNode* leaf) const;
134
135        friend std::ostream& operator<< (std::ostream& o, BspNode& n);
136
137        /// Internal method for telling the node that a movable intersects it
138        void _addMovable(const MovableObject* mov);
139
140        /// Internal method for telling the node that a movable no longer intersects it
141        void _removeMovable(const MovableObject* mov);
142
143        /// Gets the signed distance to the dividing plane
144        Real getDistance(const Vector3& pos) const;
145
146        typedef std::set<const MovableObject*> IntersectingObjectSet;
147
148        struct Brush
149        {
150            std::list<Plane> planes;
151            SceneQuery::WorldFragment fragment; // For query reporting
152        };
153        typedef std::vector<Brush*> NodeBrushList; // Main brush memory held on level
154
155        /** Get the list of solid Brushes for this node.
156        @remarks Only applicable for leaf nodes.
157        */
158        const NodeBrushList& getSolidBrushes(void) const;
159    protected:
160        BspLevel* mOwner; // Back-reference to containing level
161        bool mIsLeaf;
162
163        // Node-only members
164        /** The plane which splits space in a non-leaf node.
165            Note that nodes do not allocate the memory for other nodes - for simplicity and bulk-allocation
166            of memory the BspLevel is responsible for assigning enough memory for all nodes in one go.
167        */
168        Plane mSplitPlane;
169        /** Pointer to the node in front of this non-leaf node. */
170        BspNode* mFront;
171        /** Pointer to the node behind this non-leaf node. */
172        BspNode* mBack;
173
174        // Leaf-only members
175        /** The cluster number of this leaf.
176            Leaf nodes are assigned to 'clusters' of nodes, which are used to group nodes together for
177            visibility testing. There is a lookup table which is used to determine if one cluster of leaves
178            is visible from another cluster. Whilst it would be possible to expand all this out so that
179            each node had a list of pointers to other visible nodes, this would be very expensive in terms
180            of storage (using the cluster method there is a table which is 1-bit squared per cluster, rounded
181            up to the nearest byte obviously, which uses far less space than 4-bytes per linked node per source
182            node). Of course the limitation here is that you have to each leaf in turn to determine if it is visible
183            rather than just following a list, but since this is only done once per frame this is not such a big
184            overhead.
185        */
186        int mVisCluster;
187
188        /** The axis-aligned box which bounds node if it is a leaf. */
189        AxisAlignedBox mBounds;
190        /** Number of face groups in this node if it is a leaf. */
191        int mNumFaceGroups;
192        /** Index to the part of the main leaf facegroup index buffer(held in BspLevel) for this leaf.
193            This leaf uses mNumFaceGroups from this pointer onwards. From here you use the index
194            in this buffer to look up the actual face.
195            Note that again for simplicity and bulk memory allocation the face
196            group list itself is allocated by the BspLevel for all nodes, and each leaf node is given a section of it to
197            work on. This saves lots of small memory allocations / deallocations which limits memory fragmentation.
198        */
199        int mFaceGroupStart;
200
201        IntersectingObjectSet mMovables;
202
203        NodeBrushList mSolidBrushes;
204    public:
205        const IntersectingObjectSet& getObjects(void) const { return mMovables; }
206
207
208    };
209
210
211}
212
213#endif
Note: See TracBrowser for help on using the repository browser.