[6] | 1 | #include "lwEnvelope.h" |
---|
| 2 | |
---|
| 3 | lwKey *lwEnvelope::addKey( float time, float value ) |
---|
| 4 | { |
---|
| 5 | lwKey *key = new lwKey(time, value); |
---|
| 6 | keys.insert(lower_bound(keys.begin(), keys.end(), key), key); |
---|
| 7 | return key; |
---|
| 8 | } |
---|
| 9 | |
---|
| 10 | /*====================================================================== |
---|
| 11 | range() |
---|
| 12 | |
---|
| 13 | Given the value v of a periodic function, returns the equivalent value |
---|
| 14 | v2 in the principal interval [lo, hi]. If i isn't NULL, it receives |
---|
| 15 | the number of wavelengths between v and v2. |
---|
| 16 | |
---|
| 17 | v2 = v - i * (hi - lo) |
---|
| 18 | |
---|
| 19 | For example, range( 3 pi, 0, 2 pi, i ) returns pi, with i = 1. |
---|
| 20 | ====================================================================== */ |
---|
| 21 | |
---|
| 22 | float lwEnvelope::range( float v, float lo, float hi, int *i ) |
---|
| 23 | { |
---|
| 24 | float v2, r = hi - lo; |
---|
| 25 | |
---|
| 26 | if ( r == 0.0 ) { |
---|
| 27 | if ( i ) *i = 0; |
---|
| 28 | return lo; |
---|
| 29 | } |
---|
| 30 | |
---|
| 31 | v2 = lo + v - r * ( float ) floor(( double ) v / r ); |
---|
| 32 | if ( i ) *i = -( int )(( v2 - v ) / r + ( v2 > v ? 0.5 : -0.5 )); |
---|
| 33 | |
---|
| 34 | return v2; |
---|
| 35 | } |
---|
| 36 | |
---|
| 37 | /*====================================================================== |
---|
| 38 | hermite() |
---|
| 39 | |
---|
| 40 | Calculate the Hermite coefficients. |
---|
| 41 | ====================================================================== */ |
---|
| 42 | |
---|
| 43 | void lwEnvelope::hermite( float t, float *h1, float *h2, float *h3, float *h4 ) |
---|
| 44 | { |
---|
| 45 | float t2, t3; |
---|
| 46 | |
---|
| 47 | t2 = t * t; |
---|
| 48 | t3 = t * t2; |
---|
| 49 | |
---|
| 50 | *h2 = 3.0f * t2 - t3 - t3; |
---|
| 51 | *h1 = 1.0f - *h2; |
---|
| 52 | *h4 = t3 - t2; |
---|
| 53 | *h3 = *h4 - t2 + t; |
---|
| 54 | } |
---|
| 55 | |
---|
| 56 | /*====================================================================== |
---|
| 57 | bezier() |
---|
| 58 | |
---|
| 59 | Interpolate the value of a 1D Bezier curve. |
---|
| 60 | ====================================================================== */ |
---|
| 61 | |
---|
| 62 | float lwEnvelope::bezier( float x0, float x1, float x2, float x3, float t ) |
---|
| 63 | { |
---|
| 64 | float a, b, c, t2, t3; |
---|
| 65 | |
---|
| 66 | t2 = t * t; |
---|
| 67 | t3 = t2 * t; |
---|
| 68 | |
---|
| 69 | c = 3.0f * ( x1 - x0 ); |
---|
| 70 | b = 3.0f * ( x2 - x1 ) - c; |
---|
| 71 | a = x3 - x0 - c - b; |
---|
| 72 | |
---|
| 73 | return a * t3 + b * t2 + c * t + x0; |
---|
| 74 | } |
---|
| 75 | |
---|
| 76 | |
---|
| 77 | /*====================================================================== |
---|
| 78 | bez2_time() |
---|
| 79 | |
---|
| 80 | Find the t for which bezier() returns the input time. The handle |
---|
| 81 | endpoints of a BEZ2 curve represent the control points, and these have |
---|
| 82 | (time, value) coordinates, so time is used as both a coordinate and a |
---|
| 83 | parameter for this curve type. |
---|
| 84 | ====================================================================== */ |
---|
| 85 | |
---|
| 86 | float lwEnvelope::bez2_time( float x0, float x1, float x2, float x3, float time, float *t0, float *t1 ) |
---|
| 87 | { |
---|
| 88 | float v, t; |
---|
| 89 | |
---|
| 90 | t = *t0 + ( *t1 - *t0 ) * 0.5f; |
---|
| 91 | v = bezier( x0, x1, x2, x3, t ); |
---|
| 92 | if ( fabs( time - v ) > .0001f ) { |
---|
| 93 | if ( v > time ) |
---|
| 94 | *t1 = t; |
---|
| 95 | else |
---|
| 96 | *t0 = t; |
---|
| 97 | return bez2_time( x0, x1, x2, x3, time, t0, t1 ); |
---|
| 98 | } |
---|
| 99 | else |
---|
| 100 | return t; |
---|
| 101 | } |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | /* |
---|
| 105 | ====================================================================== |
---|
| 106 | bez2() |
---|
| 107 | |
---|
| 108 | Interpolate the value of a BEZ2 curve. |
---|
| 109 | ====================================================================== */ |
---|
| 110 | |
---|
| 111 | float lwEnvelope::bez2( lwKey *key0, lwKey *key1, float time ) |
---|
| 112 | { |
---|
| 113 | float x, y, t, t0 = 0.0f, t1 = 1.0f; |
---|
| 114 | |
---|
| 115 | if ( key0->shape == ID_BEZ2 ) |
---|
| 116 | x = key0->time + key0->param[ 2 ]; |
---|
| 117 | else |
---|
| 118 | x = key0->time + ( key1->time - key0->time ) / 3.0f; |
---|
| 119 | |
---|
| 120 | t = bez2_time( key0->time, x, key1->time + key1->param[ 0 ], key1->time, |
---|
| 121 | time, &t0, &t1 ); |
---|
| 122 | |
---|
| 123 | if ( key0->shape == ID_BEZ2 ) |
---|
| 124 | y = key0->value + key0->param[ 3 ]; |
---|
| 125 | else |
---|
| 126 | y = key0->value + key0->param[ 1 ] / 3.0f; |
---|
| 127 | |
---|
| 128 | return bezier( key0->value, y, key1->param[ 1 ] + key1->value, key1->value, t ); |
---|
| 129 | } |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | /* |
---|
| 133 | ====================================================================== |
---|
| 134 | outgoing() |
---|
| 135 | |
---|
| 136 | Return the outgoing tangent to the curve at key0. The value returned |
---|
| 137 | for the BEZ2 case is used when extrapolating a linear pre behavior and |
---|
| 138 | when interpolating a non-BEZ2 span. |
---|
| 139 | ====================================================================== */ |
---|
| 140 | |
---|
| 141 | float lwEnvelope::outgoing( unsigned int key0, unsigned int key1 ) |
---|
| 142 | { |
---|
| 143 | float a, b, d, t, tout; |
---|
| 144 | |
---|
| 145 | switch ( keys[key0]->shape ) |
---|
| 146 | { |
---|
| 147 | case ID_TCB: |
---|
| 148 | a = ( 1.0f - keys[key0]->tension ) |
---|
| 149 | * ( 1.0f + keys[key0]->continuity ) |
---|
| 150 | * ( 1.0f + keys[key0]->bias ); |
---|
| 151 | b = ( 1.0f - keys[key0]->tension ) |
---|
| 152 | * ( 1.0f - keys[key0]->continuity ) |
---|
| 153 | * ( 1.0f - keys[key0]->bias ); |
---|
| 154 | d = keys[key1]->value - keys[key0]->value; |
---|
| 155 | |
---|
| 156 | |
---|
| 157 | if ( key0 > 0 ) |
---|
| 158 | { |
---|
| 159 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time ); |
---|
| 160 | tout = t * ( a * ( keys[key0]->value - keys[ key0-1 ]->value ) + b * d ); |
---|
| 161 | } |
---|
| 162 | else |
---|
| 163 | tout = b * d; |
---|
| 164 | break; |
---|
| 165 | |
---|
| 166 | case ID_LINE: |
---|
| 167 | d = keys[key1]->value - keys[key0]->value; |
---|
| 168 | if ( key0 > 0 ) |
---|
| 169 | { |
---|
| 170 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time ); |
---|
| 171 | tout = t * ( keys[key0]->value - keys[ key0-1 ]->value + d ); |
---|
| 172 | } |
---|
| 173 | else |
---|
| 174 | tout = d; |
---|
| 175 | break; |
---|
| 176 | |
---|
| 177 | case ID_BEZI: |
---|
| 178 | case ID_HERM: |
---|
| 179 | tout = keys[key0]->param[ 1 ]; |
---|
| 180 | |
---|
| 181 | if ( key0 > 0 ) |
---|
| 182 | tout *= ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time ); |
---|
| 183 | |
---|
| 184 | break; |
---|
| 185 | |
---|
| 186 | case ID_BEZ2: |
---|
| 187 | tout = keys[key0]->param[ 3 ] * ( keys[key1]->time - keys[key0]->time ); |
---|
| 188 | if ( fabs( keys[key0]->param[ 2 ] ) > 1e-5f ) |
---|
| 189 | tout /= keys[key0]->param[ 2 ]; |
---|
| 190 | else |
---|
| 191 | tout *= 1e5f; |
---|
| 192 | break; |
---|
| 193 | |
---|
| 194 | case ID_STEP: |
---|
| 195 | default: |
---|
| 196 | tout = 0.0f; |
---|
| 197 | break; |
---|
| 198 | } |
---|
| 199 | |
---|
| 200 | return tout; |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | |
---|
| 204 | /*====================================================================== |
---|
| 205 | incoming() |
---|
| 206 | |
---|
| 207 | Return the incoming tangent to the curve at key1. The value returned |
---|
| 208 | for the BEZ2 case is used when extrapolating a linear post behavior. |
---|
| 209 | ====================================================================== */ |
---|
| 210 | |
---|
| 211 | float lwEnvelope::incoming( unsigned int key0, unsigned int key1 ) |
---|
| 212 | { |
---|
| 213 | float a, b, d, t, tin; |
---|
| 214 | |
---|
| 215 | switch ( keys[key1]->shape ) |
---|
| 216 | { |
---|
| 217 | case ID_LINE: |
---|
| 218 | d = keys[key1]->value - keys[key0]->value; |
---|
| 219 | |
---|
| 220 | if ( key1 < keys.size()-1 ) |
---|
| 221 | { |
---|
| 222 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time ); |
---|
| 223 | tin = t * ( keys[ key1+1 ]->value - keys[key1]->value + d ); |
---|
| 224 | } |
---|
| 225 | else |
---|
| 226 | tin = d; |
---|
| 227 | |
---|
| 228 | break; |
---|
| 229 | |
---|
| 230 | case ID_TCB: |
---|
| 231 | a = ( 1.0f - keys[key1]->tension ) |
---|
| 232 | * ( 1.0f - keys[key1]->continuity ) |
---|
| 233 | * ( 1.0f + keys[key1]->bias ); |
---|
| 234 | b = ( 1.0f - keys[key1]->tension ) |
---|
| 235 | * ( 1.0f + keys[key1]->continuity ) |
---|
| 236 | * ( 1.0f - keys[key1]->bias ); |
---|
| 237 | d = keys[key1]->value - keys[key0]->value; |
---|
| 238 | if ( key1 < keys.size()-1 ) { |
---|
| 239 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time ); |
---|
| 240 | tin = t * ( b * ( keys[ key1+1 ]->value - keys[key1]->value ) + a * d ); |
---|
| 241 | } |
---|
| 242 | else |
---|
| 243 | tin = a * d; |
---|
| 244 | break; |
---|
| 245 | |
---|
| 246 | case ID_BEZI: |
---|
| 247 | case ID_HERM: |
---|
| 248 | tin = keys[key1]->param[ 0 ]; |
---|
| 249 | if ( key1 < keys.size()-1 ) |
---|
| 250 | tin *= ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time ); |
---|
| 251 | break; |
---|
| 252 | return tin; |
---|
| 253 | |
---|
| 254 | case ID_BEZ2: |
---|
| 255 | tin = keys[key1]->param[ 1 ] * ( keys[key1]->time - keys[key0]->time ); |
---|
| 256 | if ( fabs( keys[key1]->param[ 0 ] ) > 1e-5f ) |
---|
| 257 | tin /= keys[key1]->param[ 0 ]; |
---|
| 258 | else |
---|
| 259 | tin *= 1e5f; |
---|
| 260 | break; |
---|
| 261 | |
---|
| 262 | case ID_STEP: |
---|
| 263 | default: |
---|
| 264 | tin = 0.0f; |
---|
| 265 | break; |
---|
| 266 | } |
---|
| 267 | |
---|
| 268 | return tin; |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | /*====================================================================== |
---|
| 272 | evalEnvelope() |
---|
| 273 | |
---|
| 274 | Given a list of keys and a time, returns the interpolated value of the |
---|
| 275 | envelope at that time. |
---|
| 276 | ====================================================================== */ |
---|
| 277 | |
---|
| 278 | float lwEnvelope::evaluate( float time ) |
---|
| 279 | { |
---|
| 280 | lwKey *key0, *key1, *skey, *ekey; |
---|
| 281 | float t, h1, h2, h3, h4, tin, tout, offset = 0.0f; |
---|
| 282 | int noff; |
---|
| 283 | int key0index, key1index; |
---|
| 284 | |
---|
| 285 | |
---|
| 286 | /* if there's no key, the value is 0 */ |
---|
| 287 | |
---|
| 288 | if ( keys.size() == 0 ) return 0.0f; |
---|
| 289 | |
---|
| 290 | /* if there's only one key, the value is constant */ |
---|
| 291 | |
---|
| 292 | if ( keys.size() == 1 ) return keys[0]->value; |
---|
| 293 | |
---|
| 294 | /* find the first and last keys */ |
---|
| 295 | |
---|
| 296 | key0index = 0; |
---|
| 297 | key1index = keys.size()-1; |
---|
| 298 | skey = keys[key0index]; |
---|
| 299 | ekey = keys[key1index]; |
---|
| 300 | |
---|
| 301 | /* use pre-behavior if time is before first key time */ |
---|
| 302 | |
---|
| 303 | if ( time < skey->time ) |
---|
| 304 | { |
---|
| 305 | switch ( behavior[ 0 ] ) |
---|
| 306 | { |
---|
| 307 | case BEH_RESET: |
---|
| 308 | return 0.0f; |
---|
| 309 | |
---|
| 310 | case BEH_CONSTANT: |
---|
| 311 | return skey->value; |
---|
| 312 | |
---|
| 313 | case BEH_REPEAT: |
---|
| 314 | time = range( time, skey->time, ekey->time, NULL ); |
---|
| 315 | break; |
---|
| 316 | |
---|
| 317 | case BEH_OSCILLATE: |
---|
| 318 | time = range( time, skey->time, ekey->time, &noff ); |
---|
| 319 | if ( noff % 2 ) |
---|
| 320 | time = ekey->time - skey->time - time; |
---|
| 321 | break; |
---|
| 322 | |
---|
| 323 | case BEH_OFFSET: |
---|
| 324 | time = range( time, skey->time, ekey->time, &noff ); |
---|
| 325 | offset = noff * ( ekey->value - skey->value ); |
---|
| 326 | break; |
---|
| 327 | |
---|
| 328 | case BEH_LINEAR: |
---|
| 329 | tout = outgoing( key0index, key0index+1 ) / ( keys[key0index+1]->time - keys[key0index]->time ); |
---|
| 330 | |
---|
| 331 | return tout * ( time - skey->time ) + skey->value; |
---|
| 332 | } |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | /* use post-behavior if time is after last key time */ |
---|
| 336 | |
---|
| 337 | else if ( time > ekey->time ) { |
---|
| 338 | switch ( behavior[ 1 ] ) |
---|
| 339 | { |
---|
| 340 | case BEH_RESET: |
---|
| 341 | return 0.0f; |
---|
| 342 | |
---|
| 343 | case BEH_CONSTANT: |
---|
| 344 | return ekey->value; |
---|
| 345 | |
---|
| 346 | case BEH_REPEAT: |
---|
| 347 | time = range( time, skey->time, ekey->time, NULL ); |
---|
| 348 | break; |
---|
| 349 | |
---|
| 350 | case BEH_OSCILLATE: |
---|
| 351 | time = range( time, skey->time, ekey->time, &noff ); |
---|
| 352 | if ( noff % 2 ) |
---|
| 353 | time = ekey->time - skey->time - time; |
---|
| 354 | break; |
---|
| 355 | |
---|
| 356 | case BEH_OFFSET: |
---|
| 357 | time = range( time, skey->time, ekey->time, &noff ); |
---|
| 358 | offset = noff * ( ekey->value - skey->value ); |
---|
| 359 | break; |
---|
| 360 | |
---|
| 361 | case BEH_LINEAR: |
---|
| 362 | tin = incoming( key1index-1, key1index ) / ( ekey->time - keys[key1index-1]->time ); |
---|
| 363 | return tin * ( time - ekey->time ) + ekey->value; |
---|
| 364 | } |
---|
| 365 | } |
---|
| 366 | |
---|
| 367 | /* get the endpoints of the interval being evaluated */ |
---|
| 368 | |
---|
| 369 | key0index = keys.size()-2; |
---|
| 370 | key1index = keys.size()-1; |
---|
| 371 | key0 = keys[key0index]; |
---|
| 372 | key1 = keys[key1index]; |
---|
| 373 | |
---|
| 374 | /* check for singularities first */ |
---|
| 375 | |
---|
| 376 | if ( time == key0->time ) |
---|
| 377 | return key0->value + offset; |
---|
| 378 | else if ( time == key1->time ) |
---|
| 379 | return key1->value + offset; |
---|
| 380 | |
---|
| 381 | /* get interval length, time in [0, 1] */ |
---|
| 382 | |
---|
| 383 | t = ( time - key0->time ) / ( key1->time - key0->time ); |
---|
| 384 | |
---|
| 385 | /* interpolate */ |
---|
| 386 | |
---|
| 387 | switch ( key1->shape ) |
---|
| 388 | { |
---|
| 389 | case ID_TCB: |
---|
| 390 | case ID_BEZI: |
---|
| 391 | case ID_HERM: |
---|
| 392 | tout = outgoing( key0index, key1index ); |
---|
| 393 | tin = incoming( key0index, key1index ); |
---|
| 394 | hermite( t, &h1, &h2, &h3, &h4 ); |
---|
| 395 | return h1 * key0->value + h2 * key1->value + h3 * tout + h4 * tin + offset; |
---|
| 396 | |
---|
| 397 | case ID_BEZ2: |
---|
| 398 | return bez2( key0, key1, time ) + offset; |
---|
| 399 | |
---|
| 400 | case ID_LINE: |
---|
| 401 | return key0->value + t * ( key1->value - key0->value ) + offset; |
---|
| 402 | |
---|
| 403 | case ID_STEP: |
---|
| 404 | return key0->value + offset; |
---|
| 405 | |
---|
| 406 | default: |
---|
| 407 | return offset; |
---|
| 408 | } |
---|
| 409 | } |
---|