1 | #include "lwEnvelope.h" |
---|
2 | |
---|
3 | lwKey *lwEnvelope::addKey( float time, float value ) |
---|
4 | { |
---|
5 | lwKey *key = new lwKey(time, value); |
---|
6 | keys.insert(lower_bound(keys.begin(), keys.end(), key), key); |
---|
7 | return key; |
---|
8 | } |
---|
9 | |
---|
10 | /*====================================================================== |
---|
11 | range() |
---|
12 | |
---|
13 | Given the value v of a periodic function, returns the equivalent value |
---|
14 | v2 in the principal interval [lo, hi]. If i isn't NULL, it receives |
---|
15 | the number of wavelengths between v and v2. |
---|
16 | |
---|
17 | v2 = v - i * (hi - lo) |
---|
18 | |
---|
19 | For example, range( 3 pi, 0, 2 pi, i ) returns pi, with i = 1. |
---|
20 | ====================================================================== */ |
---|
21 | |
---|
22 | float lwEnvelope::range( float v, float lo, float hi, int *i ) |
---|
23 | { |
---|
24 | float v2, r = hi - lo; |
---|
25 | |
---|
26 | if ( r == 0.0 ) { |
---|
27 | if ( i ) *i = 0; |
---|
28 | return lo; |
---|
29 | } |
---|
30 | |
---|
31 | v2 = lo + v - r * ( float ) floor(( double ) v / r ); |
---|
32 | if ( i ) *i = -( int )(( v2 - v ) / r + ( v2 > v ? 0.5 : -0.5 )); |
---|
33 | |
---|
34 | return v2; |
---|
35 | } |
---|
36 | |
---|
37 | /*====================================================================== |
---|
38 | hermite() |
---|
39 | |
---|
40 | Calculate the Hermite coefficients. |
---|
41 | ====================================================================== */ |
---|
42 | |
---|
43 | void lwEnvelope::hermite( float t, float *h1, float *h2, float *h3, float *h4 ) |
---|
44 | { |
---|
45 | float t2, t3; |
---|
46 | |
---|
47 | t2 = t * t; |
---|
48 | t3 = t * t2; |
---|
49 | |
---|
50 | *h2 = 3.0f * t2 - t3 - t3; |
---|
51 | *h1 = 1.0f - *h2; |
---|
52 | *h4 = t3 - t2; |
---|
53 | *h3 = *h4 - t2 + t; |
---|
54 | } |
---|
55 | |
---|
56 | /*====================================================================== |
---|
57 | bezier() |
---|
58 | |
---|
59 | Interpolate the value of a 1D Bezier curve. |
---|
60 | ====================================================================== */ |
---|
61 | |
---|
62 | float lwEnvelope::bezier( float x0, float x1, float x2, float x3, float t ) |
---|
63 | { |
---|
64 | float a, b, c, t2, t3; |
---|
65 | |
---|
66 | t2 = t * t; |
---|
67 | t3 = t2 * t; |
---|
68 | |
---|
69 | c = 3.0f * ( x1 - x0 ); |
---|
70 | b = 3.0f * ( x2 - x1 ) - c; |
---|
71 | a = x3 - x0 - c - b; |
---|
72 | |
---|
73 | return a * t3 + b * t2 + c * t + x0; |
---|
74 | } |
---|
75 | |
---|
76 | |
---|
77 | /*====================================================================== |
---|
78 | bez2_time() |
---|
79 | |
---|
80 | Find the t for which bezier() returns the input time. The handle |
---|
81 | endpoints of a BEZ2 curve represent the control points, and these have |
---|
82 | (time, value) coordinates, so time is used as both a coordinate and a |
---|
83 | parameter for this curve type. |
---|
84 | ====================================================================== */ |
---|
85 | |
---|
86 | float lwEnvelope::bez2_time( float x0, float x1, float x2, float x3, float time, float *t0, float *t1 ) |
---|
87 | { |
---|
88 | float v, t; |
---|
89 | |
---|
90 | t = *t0 + ( *t1 - *t0 ) * 0.5f; |
---|
91 | v = bezier( x0, x1, x2, x3, t ); |
---|
92 | if ( fabs( time - v ) > .0001f ) { |
---|
93 | if ( v > time ) |
---|
94 | *t1 = t; |
---|
95 | else |
---|
96 | *t0 = t; |
---|
97 | return bez2_time( x0, x1, x2, x3, time, t0, t1 ); |
---|
98 | } |
---|
99 | else |
---|
100 | return t; |
---|
101 | } |
---|
102 | |
---|
103 | |
---|
104 | /* |
---|
105 | ====================================================================== |
---|
106 | bez2() |
---|
107 | |
---|
108 | Interpolate the value of a BEZ2 curve. |
---|
109 | ====================================================================== */ |
---|
110 | |
---|
111 | float lwEnvelope::bez2( lwKey *key0, lwKey *key1, float time ) |
---|
112 | { |
---|
113 | float x, y, t, t0 = 0.0f, t1 = 1.0f; |
---|
114 | |
---|
115 | if ( key0->shape == ID_BEZ2 ) |
---|
116 | x = key0->time + key0->param[ 2 ]; |
---|
117 | else |
---|
118 | x = key0->time + ( key1->time - key0->time ) / 3.0f; |
---|
119 | |
---|
120 | t = bez2_time( key0->time, x, key1->time + key1->param[ 0 ], key1->time, |
---|
121 | time, &t0, &t1 ); |
---|
122 | |
---|
123 | if ( key0->shape == ID_BEZ2 ) |
---|
124 | y = key0->value + key0->param[ 3 ]; |
---|
125 | else |
---|
126 | y = key0->value + key0->param[ 1 ] / 3.0f; |
---|
127 | |
---|
128 | return bezier( key0->value, y, key1->param[ 1 ] + key1->value, key1->value, t ); |
---|
129 | } |
---|
130 | |
---|
131 | |
---|
132 | /* |
---|
133 | ====================================================================== |
---|
134 | outgoing() |
---|
135 | |
---|
136 | Return the outgoing tangent to the curve at key0. The value returned |
---|
137 | for the BEZ2 case is used when extrapolating a linear pre behavior and |
---|
138 | when interpolating a non-BEZ2 span. |
---|
139 | ====================================================================== */ |
---|
140 | |
---|
141 | float lwEnvelope::outgoing( unsigned int key0, unsigned int key1 ) |
---|
142 | { |
---|
143 | float a, b, d, t, tout; |
---|
144 | |
---|
145 | switch ( keys[key0]->shape ) |
---|
146 | { |
---|
147 | case ID_TCB: |
---|
148 | a = ( 1.0f - keys[key0]->tension ) |
---|
149 | * ( 1.0f + keys[key0]->continuity ) |
---|
150 | * ( 1.0f + keys[key0]->bias ); |
---|
151 | b = ( 1.0f - keys[key0]->tension ) |
---|
152 | * ( 1.0f - keys[key0]->continuity ) |
---|
153 | * ( 1.0f - keys[key0]->bias ); |
---|
154 | d = keys[key1]->value - keys[key0]->value; |
---|
155 | |
---|
156 | |
---|
157 | if ( key0 > 0 ) |
---|
158 | { |
---|
159 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time ); |
---|
160 | tout = t * ( a * ( keys[key0]->value - keys[ key0-1 ]->value ) + b * d ); |
---|
161 | } |
---|
162 | else |
---|
163 | tout = b * d; |
---|
164 | break; |
---|
165 | |
---|
166 | case ID_LINE: |
---|
167 | d = keys[key1]->value - keys[key0]->value; |
---|
168 | if ( key0 > 0 ) |
---|
169 | { |
---|
170 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time ); |
---|
171 | tout = t * ( keys[key0]->value - keys[ key0-1 ]->value + d ); |
---|
172 | } |
---|
173 | else |
---|
174 | tout = d; |
---|
175 | break; |
---|
176 | |
---|
177 | case ID_BEZI: |
---|
178 | case ID_HERM: |
---|
179 | tout = keys[key0]->param[ 1 ]; |
---|
180 | |
---|
181 | if ( key0 > 0 ) |
---|
182 | tout *= ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time ); |
---|
183 | |
---|
184 | break; |
---|
185 | |
---|
186 | case ID_BEZ2: |
---|
187 | tout = keys[key0]->param[ 3 ] * ( keys[key1]->time - keys[key0]->time ); |
---|
188 | if ( fabs( keys[key0]->param[ 2 ] ) > 1e-5f ) |
---|
189 | tout /= keys[key0]->param[ 2 ]; |
---|
190 | else |
---|
191 | tout *= 1e5f; |
---|
192 | break; |
---|
193 | |
---|
194 | case ID_STEP: |
---|
195 | default: |
---|
196 | tout = 0.0f; |
---|
197 | break; |
---|
198 | } |
---|
199 | |
---|
200 | return tout; |
---|
201 | } |
---|
202 | |
---|
203 | |
---|
204 | /*====================================================================== |
---|
205 | incoming() |
---|
206 | |
---|
207 | Return the incoming tangent to the curve at key1. The value returned |
---|
208 | for the BEZ2 case is used when extrapolating a linear post behavior. |
---|
209 | ====================================================================== */ |
---|
210 | |
---|
211 | float lwEnvelope::incoming( unsigned int key0, unsigned int key1 ) |
---|
212 | { |
---|
213 | float a, b, d, t, tin; |
---|
214 | |
---|
215 | switch ( keys[key1]->shape ) |
---|
216 | { |
---|
217 | case ID_LINE: |
---|
218 | d = keys[key1]->value - keys[key0]->value; |
---|
219 | |
---|
220 | if ( key1 < keys.size()-1 ) |
---|
221 | { |
---|
222 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time ); |
---|
223 | tin = t * ( keys[ key1+1 ]->value - keys[key1]->value + d ); |
---|
224 | } |
---|
225 | else |
---|
226 | tin = d; |
---|
227 | |
---|
228 | break; |
---|
229 | |
---|
230 | case ID_TCB: |
---|
231 | a = ( 1.0f - keys[key1]->tension ) |
---|
232 | * ( 1.0f - keys[key1]->continuity ) |
---|
233 | * ( 1.0f + keys[key1]->bias ); |
---|
234 | b = ( 1.0f - keys[key1]->tension ) |
---|
235 | * ( 1.0f + keys[key1]->continuity ) |
---|
236 | * ( 1.0f - keys[key1]->bias ); |
---|
237 | d = keys[key1]->value - keys[key0]->value; |
---|
238 | if ( key1 < keys.size()-1 ) { |
---|
239 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time ); |
---|
240 | tin = t * ( b * ( keys[ key1+1 ]->value - keys[key1]->value ) + a * d ); |
---|
241 | } |
---|
242 | else |
---|
243 | tin = a * d; |
---|
244 | break; |
---|
245 | |
---|
246 | case ID_BEZI: |
---|
247 | case ID_HERM: |
---|
248 | tin = keys[key1]->param[ 0 ]; |
---|
249 | if ( key1 < keys.size()-1 ) |
---|
250 | tin *= ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time ); |
---|
251 | break; |
---|
252 | return tin; |
---|
253 | |
---|
254 | case ID_BEZ2: |
---|
255 | tin = keys[key1]->param[ 1 ] * ( keys[key1]->time - keys[key0]->time ); |
---|
256 | if ( fabs( keys[key1]->param[ 0 ] ) > 1e-5f ) |
---|
257 | tin /= keys[key1]->param[ 0 ]; |
---|
258 | else |
---|
259 | tin *= 1e5f; |
---|
260 | break; |
---|
261 | |
---|
262 | case ID_STEP: |
---|
263 | default: |
---|
264 | tin = 0.0f; |
---|
265 | break; |
---|
266 | } |
---|
267 | |
---|
268 | return tin; |
---|
269 | } |
---|
270 | |
---|
271 | /*====================================================================== |
---|
272 | evalEnvelope() |
---|
273 | |
---|
274 | Given a list of keys and a time, returns the interpolated value of the |
---|
275 | envelope at that time. |
---|
276 | ====================================================================== */ |
---|
277 | |
---|
278 | float lwEnvelope::evaluate( float time ) |
---|
279 | { |
---|
280 | lwKey *key0, *key1, *skey, *ekey; |
---|
281 | float t, h1, h2, h3, h4, tin, tout, offset = 0.0f; |
---|
282 | int noff; |
---|
283 | int key0index, key1index; |
---|
284 | |
---|
285 | |
---|
286 | /* if there's no key, the value is 0 */ |
---|
287 | |
---|
288 | if ( keys.size() == 0 ) return 0.0f; |
---|
289 | |
---|
290 | /* if there's only one key, the value is constant */ |
---|
291 | |
---|
292 | if ( keys.size() == 1 ) return keys[0]->value; |
---|
293 | |
---|
294 | /* find the first and last keys */ |
---|
295 | |
---|
296 | key0index = 0; |
---|
297 | key1index = keys.size()-1; |
---|
298 | skey = keys[key0index]; |
---|
299 | ekey = keys[key1index]; |
---|
300 | |
---|
301 | /* use pre-behavior if time is before first key time */ |
---|
302 | |
---|
303 | if ( time < skey->time ) |
---|
304 | { |
---|
305 | switch ( behavior[ 0 ] ) |
---|
306 | { |
---|
307 | case BEH_RESET: |
---|
308 | return 0.0f; |
---|
309 | |
---|
310 | case BEH_CONSTANT: |
---|
311 | return skey->value; |
---|
312 | |
---|
313 | case BEH_REPEAT: |
---|
314 | time = range( time, skey->time, ekey->time, NULL ); |
---|
315 | break; |
---|
316 | |
---|
317 | case BEH_OSCILLATE: |
---|
318 | time = range( time, skey->time, ekey->time, &noff ); |
---|
319 | if ( noff % 2 ) |
---|
320 | time = ekey->time - skey->time - time; |
---|
321 | break; |
---|
322 | |
---|
323 | case BEH_OFFSET: |
---|
324 | time = range( time, skey->time, ekey->time, &noff ); |
---|
325 | offset = noff * ( ekey->value - skey->value ); |
---|
326 | break; |
---|
327 | |
---|
328 | case BEH_LINEAR: |
---|
329 | tout = outgoing( key0index, key0index+1 ) / ( keys[key0index+1]->time - keys[key0index]->time ); |
---|
330 | |
---|
331 | return tout * ( time - skey->time ) + skey->value; |
---|
332 | } |
---|
333 | } |
---|
334 | |
---|
335 | /* use post-behavior if time is after last key time */ |
---|
336 | |
---|
337 | else if ( time > ekey->time ) { |
---|
338 | switch ( behavior[ 1 ] ) |
---|
339 | { |
---|
340 | case BEH_RESET: |
---|
341 | return 0.0f; |
---|
342 | |
---|
343 | case BEH_CONSTANT: |
---|
344 | return ekey->value; |
---|
345 | |
---|
346 | case BEH_REPEAT: |
---|
347 | time = range( time, skey->time, ekey->time, NULL ); |
---|
348 | break; |
---|
349 | |
---|
350 | case BEH_OSCILLATE: |
---|
351 | time = range( time, skey->time, ekey->time, &noff ); |
---|
352 | if ( noff % 2 ) |
---|
353 | time = ekey->time - skey->time - time; |
---|
354 | break; |
---|
355 | |
---|
356 | case BEH_OFFSET: |
---|
357 | time = range( time, skey->time, ekey->time, &noff ); |
---|
358 | offset = noff * ( ekey->value - skey->value ); |
---|
359 | break; |
---|
360 | |
---|
361 | case BEH_LINEAR: |
---|
362 | tin = incoming( key1index-1, key1index ) / ( ekey->time - keys[key1index-1]->time ); |
---|
363 | return tin * ( time - ekey->time ) + ekey->value; |
---|
364 | } |
---|
365 | } |
---|
366 | |
---|
367 | /* get the endpoints of the interval being evaluated */ |
---|
368 | |
---|
369 | key0index = keys.size()-2; |
---|
370 | key1index = keys.size()-1; |
---|
371 | key0 = keys[key0index]; |
---|
372 | key1 = keys[key1index]; |
---|
373 | |
---|
374 | /* check for singularities first */ |
---|
375 | |
---|
376 | if ( time == key0->time ) |
---|
377 | return key0->value + offset; |
---|
378 | else if ( time == key1->time ) |
---|
379 | return key1->value + offset; |
---|
380 | |
---|
381 | /* get interval length, time in [0, 1] */ |
---|
382 | |
---|
383 | t = ( time - key0->time ) / ( key1->time - key0->time ); |
---|
384 | |
---|
385 | /* interpolate */ |
---|
386 | |
---|
387 | switch ( key1->shape ) |
---|
388 | { |
---|
389 | case ID_TCB: |
---|
390 | case ID_BEZI: |
---|
391 | case ID_HERM: |
---|
392 | tout = outgoing( key0index, key1index ); |
---|
393 | tin = incoming( key0index, key1index ); |
---|
394 | hermite( t, &h1, &h2, &h3, &h4 ); |
---|
395 | return h1 * key0->value + h2 * key1->value + h3 * tout + h4 * tin + offset; |
---|
396 | |
---|
397 | case ID_BEZ2: |
---|
398 | return bez2( key0, key1, time ) + offset; |
---|
399 | |
---|
400 | case ID_LINE: |
---|
401 | return key0->value + t * ( key1->value - key0->value ) + offset; |
---|
402 | |
---|
403 | case ID_STEP: |
---|
404 | return key0->value + offset; |
---|
405 | |
---|
406 | default: |
---|
407 | return offset; |
---|
408 | } |
---|
409 | } |
---|