1 | // Copyright (C) 2000, 2001 Stephen Cleary |
---|
2 | // |
---|
3 | // Distributed under the Boost Software License, Version 1.0. (See |
---|
4 | // accompanying file LICENSE_1_0.txt or copy at |
---|
5 | // http://www.boost.org/LICENSE_1_0.txt) |
---|
6 | // |
---|
7 | // See http://www.boost.org for updates, documentation, and revision history. |
---|
8 | |
---|
9 | #ifndef BOOST_POOL_HPP |
---|
10 | #define BOOST_POOL_HPP |
---|
11 | |
---|
12 | #include <boost/config.hpp> // for workarounds |
---|
13 | |
---|
14 | // std::less, std::less_equal, std::greater |
---|
15 | #include <functional> |
---|
16 | // new[], delete[], std::nothrow |
---|
17 | #include <new> |
---|
18 | // std::size_t, std::ptrdiff_t |
---|
19 | #include <cstddef> |
---|
20 | // std::malloc, std::free |
---|
21 | #include <cstdlib> |
---|
22 | // std::invalid_argument |
---|
23 | #include <exception> |
---|
24 | // std::max |
---|
25 | #include <algorithm> |
---|
26 | |
---|
27 | #include <boost/pool/poolfwd.hpp> |
---|
28 | |
---|
29 | // boost::details::pool::ct_lcm |
---|
30 | #include <boost/pool/detail/ct_gcd_lcm.hpp> |
---|
31 | // boost::details::pool::lcm |
---|
32 | #include <boost/pool/detail/gcd_lcm.hpp> |
---|
33 | // boost::simple_segregated_storage |
---|
34 | #include <boost/pool/simple_segregated_storage.hpp> |
---|
35 | |
---|
36 | #ifdef BOOST_NO_STDC_NAMESPACE |
---|
37 | namespace std { using ::malloc; using ::free; } |
---|
38 | #endif |
---|
39 | |
---|
40 | // There are a few places in this file where the expression "this->m" is used. |
---|
41 | // This expression is used to force instantiation-time name lookup, which I am |
---|
42 | // informed is required for strict Standard compliance. It's only necessary |
---|
43 | // if "m" is a member of a base class that is dependent on a template |
---|
44 | // parameter. |
---|
45 | // Thanks to Jens Maurer for pointing this out! |
---|
46 | |
---|
47 | namespace boost { |
---|
48 | |
---|
49 | struct default_user_allocator_new_delete |
---|
50 | { |
---|
51 | typedef std::size_t size_type; |
---|
52 | typedef std::ptrdiff_t difference_type; |
---|
53 | |
---|
54 | static char * malloc(const size_type bytes) |
---|
55 | { return new (std::nothrow) char[bytes]; } |
---|
56 | static void free(char * const block) |
---|
57 | { delete [] block; } |
---|
58 | }; |
---|
59 | |
---|
60 | struct default_user_allocator_malloc_free |
---|
61 | { |
---|
62 | typedef std::size_t size_type; |
---|
63 | typedef std::ptrdiff_t difference_type; |
---|
64 | |
---|
65 | static char * malloc(const size_type bytes) |
---|
66 | { return reinterpret_cast<char *>(std::malloc(bytes)); } |
---|
67 | static void free(char * const block) |
---|
68 | { std::free(block); } |
---|
69 | }; |
---|
70 | |
---|
71 | namespace details { |
---|
72 | |
---|
73 | // PODptr is a class that pretends to be a "pointer" to different class types |
---|
74 | // that don't really exist. It provides member functions to access the "data" |
---|
75 | // of the "object" it points to. Since these "class" types are of variable |
---|
76 | // size, and contains some information at the *end* of its memory (for |
---|
77 | // alignment reasons), PODptr must contain the size of this "class" as well as |
---|
78 | // the pointer to this "object". |
---|
79 | template <typename SizeType> |
---|
80 | class PODptr |
---|
81 | { |
---|
82 | public: |
---|
83 | typedef SizeType size_type; |
---|
84 | |
---|
85 | private: |
---|
86 | char * ptr; |
---|
87 | size_type sz; |
---|
88 | |
---|
89 | char * ptr_next_size() const |
---|
90 | { return (ptr + sz - sizeof(size_type)); } |
---|
91 | char * ptr_next_ptr() const |
---|
92 | { |
---|
93 | return (ptr_next_size() - |
---|
94 | pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value); |
---|
95 | } |
---|
96 | |
---|
97 | public: |
---|
98 | PODptr(char * const nptr, const size_type nsize) |
---|
99 | :ptr(nptr), sz(nsize) { } |
---|
100 | PODptr() |
---|
101 | :ptr(0), sz(0) { } |
---|
102 | |
---|
103 | bool valid() const { return (begin() != 0); } |
---|
104 | void invalidate() { begin() = 0; } |
---|
105 | char * & begin() { return ptr; } |
---|
106 | char * begin() const { return ptr; } |
---|
107 | char * end() const { return ptr_next_ptr(); } |
---|
108 | size_type total_size() const { return sz; } |
---|
109 | size_type element_size() const |
---|
110 | { |
---|
111 | return (sz - sizeof(size_type) - |
---|
112 | pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value); |
---|
113 | } |
---|
114 | |
---|
115 | size_type & next_size() const |
---|
116 | { return *(reinterpret_cast<size_type *>(ptr_next_size())); } |
---|
117 | char * & next_ptr() const |
---|
118 | { return *(reinterpret_cast<char **>(ptr_next_ptr())); } |
---|
119 | |
---|
120 | PODptr next() const |
---|
121 | { return PODptr<size_type>(next_ptr(), next_size()); } |
---|
122 | void next(const PODptr & arg) const |
---|
123 | { |
---|
124 | next_ptr() = arg.begin(); |
---|
125 | next_size() = arg.total_size(); |
---|
126 | } |
---|
127 | }; |
---|
128 | |
---|
129 | } // namespace details |
---|
130 | |
---|
131 | template <typename UserAllocator> |
---|
132 | class pool: protected simple_segregated_storage< |
---|
133 | typename UserAllocator::size_type> |
---|
134 | { |
---|
135 | public: |
---|
136 | typedef UserAllocator user_allocator; |
---|
137 | typedef typename UserAllocator::size_type size_type; |
---|
138 | typedef typename UserAllocator::difference_type difference_type; |
---|
139 | |
---|
140 | private: |
---|
141 | BOOST_STATIC_CONSTANT(unsigned, min_alloc_size = |
---|
142 | (::boost::details::pool::ct_lcm<sizeof(void *), sizeof(size_type)>::value) ); |
---|
143 | |
---|
144 | // Returns 0 if out-of-memory |
---|
145 | // Called if malloc/ordered_malloc needs to resize the free list |
---|
146 | void * malloc_need_resize(); |
---|
147 | void * ordered_malloc_need_resize(); |
---|
148 | |
---|
149 | protected: |
---|
150 | details::PODptr<size_type> list; |
---|
151 | |
---|
152 | simple_segregated_storage<size_type> & store() { return *this; } |
---|
153 | const simple_segregated_storage<size_type> & store() const { return *this; } |
---|
154 | const size_type requested_size; |
---|
155 | size_type next_size; |
---|
156 | |
---|
157 | // finds which POD in the list 'chunk' was allocated from |
---|
158 | details::PODptr<size_type> find_POD(void * const chunk) const; |
---|
159 | |
---|
160 | // is_from() tests a chunk to determine if it belongs in a block |
---|
161 | static bool is_from(void * const chunk, char * const i, |
---|
162 | const size_type sizeof_i) |
---|
163 | { |
---|
164 | // We use std::less_equal and std::less to test 'chunk' |
---|
165 | // against the array bounds because standard operators |
---|
166 | // may return unspecified results. |
---|
167 | // This is to ensure portability. The operators < <= > >= are only |
---|
168 | // defined for pointers to objects that are 1) in the same array, or |
---|
169 | // 2) subobjects of the same object [5.9/2]. |
---|
170 | // The functor objects guarantee a total order for any pointer [20.3.3/8] |
---|
171 | //WAS: |
---|
172 | // return (std::less_equal<void *>()(static_cast<void *>(i), chunk) |
---|
173 | // && std::less<void *>()(chunk, |
---|
174 | // static_cast<void *>(i + sizeof_i))); |
---|
175 | std::less_equal<void *> lt_eq; |
---|
176 | std::less<void *> lt; |
---|
177 | return (lt_eq(i, chunk) && lt(chunk, i + sizeof_i)); |
---|
178 | } |
---|
179 | |
---|
180 | size_type alloc_size() const |
---|
181 | { |
---|
182 | const unsigned min_size = min_alloc_size; |
---|
183 | return details::pool::lcm<size_type>(requested_size, min_size); |
---|
184 | } |
---|
185 | |
---|
186 | // for the sake of code readability :) |
---|
187 | static void * & nextof(void * const ptr) |
---|
188 | { return *(static_cast<void **>(ptr)); } |
---|
189 | |
---|
190 | public: |
---|
191 | // The second parameter here is an extension! |
---|
192 | // pre: npartition_size != 0 && nnext_size != 0 |
---|
193 | explicit pool(const size_type nrequested_size, |
---|
194 | const size_type nnext_size = 32) |
---|
195 | :list(0, 0), requested_size(nrequested_size), next_size(nnext_size) |
---|
196 | { } |
---|
197 | |
---|
198 | ~pool() { purge_memory(); } |
---|
199 | |
---|
200 | // Releases memory blocks that don't have chunks allocated |
---|
201 | // pre: lists are ordered |
---|
202 | // Returns true if memory was actually deallocated |
---|
203 | bool release_memory(); |
---|
204 | |
---|
205 | // Releases *all* memory blocks, even if chunks are still allocated |
---|
206 | // Returns true if memory was actually deallocated |
---|
207 | bool purge_memory(); |
---|
208 | |
---|
209 | // These functions are extensions! |
---|
210 | size_type get_next_size() const { return next_size; } |
---|
211 | void set_next_size(const size_type nnext_size) { next_size = nnext_size; } |
---|
212 | |
---|
213 | // Both malloc and ordered_malloc do a quick inlined check first for any |
---|
214 | // free chunks. Only if we need to get another memory block do we call |
---|
215 | // the non-inlined *_need_resize() functions. |
---|
216 | // Returns 0 if out-of-memory |
---|
217 | void * malloc() |
---|
218 | { |
---|
219 | // Look for a non-empty storage |
---|
220 | if (!store().empty()) |
---|
221 | return store().malloc(); |
---|
222 | return malloc_need_resize(); |
---|
223 | } |
---|
224 | |
---|
225 | void * ordered_malloc() |
---|
226 | { |
---|
227 | // Look for a non-empty storage |
---|
228 | if (!store().empty()) |
---|
229 | return store().malloc(); |
---|
230 | return ordered_malloc_need_resize(); |
---|
231 | } |
---|
232 | |
---|
233 | // Returns 0 if out-of-memory |
---|
234 | // Allocate a contiguous section of n chunks |
---|
235 | void * ordered_malloc(size_type n); |
---|
236 | |
---|
237 | // pre: 'chunk' must have been previously |
---|
238 | // returned by *this.malloc(). |
---|
239 | void free(void * const chunk) |
---|
240 | { store().free(chunk); } |
---|
241 | |
---|
242 | // pre: 'chunk' must have been previously |
---|
243 | // returned by *this.malloc(). |
---|
244 | void ordered_free(void * const chunk) |
---|
245 | { store().ordered_free(chunk); } |
---|
246 | |
---|
247 | // pre: 'chunk' must have been previously |
---|
248 | // returned by *this.malloc(n). |
---|
249 | void free(void * const chunks, const size_type n) |
---|
250 | { |
---|
251 | const size_type partition_size = alloc_size(); |
---|
252 | const size_type total_req_size = n * requested_size; |
---|
253 | const size_type num_chunks = total_req_size / partition_size + |
---|
254 | static_cast<bool>(total_req_size % partition_size); |
---|
255 | |
---|
256 | store().free_n(chunks, num_chunks, partition_size); |
---|
257 | } |
---|
258 | |
---|
259 | // pre: 'chunk' must have been previously |
---|
260 | // returned by *this.malloc(n). |
---|
261 | void ordered_free(void * const chunks, const size_type n) |
---|
262 | { |
---|
263 | const size_type partition_size = alloc_size(); |
---|
264 | const size_type total_req_size = n * requested_size; |
---|
265 | const size_type num_chunks = total_req_size / partition_size + |
---|
266 | static_cast<bool>(total_req_size % partition_size); |
---|
267 | |
---|
268 | store().ordered_free_n(chunks, num_chunks, partition_size); |
---|
269 | } |
---|
270 | |
---|
271 | // is_from() tests a chunk to determine if it was allocated from *this |
---|
272 | bool is_from(void * const chunk) const |
---|
273 | { |
---|
274 | return (find_POD(chunk).valid()); |
---|
275 | } |
---|
276 | }; |
---|
277 | |
---|
278 | template <typename UserAllocator> |
---|
279 | bool pool<UserAllocator>::release_memory() |
---|
280 | { |
---|
281 | // This is the return value: it will be set to true when we actually call |
---|
282 | // UserAllocator::free(..) |
---|
283 | bool ret = false; |
---|
284 | |
---|
285 | // This is a current & previous iterator pair over the memory block list |
---|
286 | details::PODptr<size_type> ptr = list; |
---|
287 | details::PODptr<size_type> prev; |
---|
288 | |
---|
289 | // This is a current & previous iterator pair over the free memory chunk list |
---|
290 | // Note that "prev_free" in this case does NOT point to the previous memory |
---|
291 | // chunk in the free list, but rather the last free memory chunk before the |
---|
292 | // current block. |
---|
293 | void * free = this->first; |
---|
294 | void * prev_free = 0; |
---|
295 | |
---|
296 | const size_type partition_size = alloc_size(); |
---|
297 | |
---|
298 | // Search through all the all the allocated memory blocks |
---|
299 | while (ptr.valid()) |
---|
300 | { |
---|
301 | // At this point: |
---|
302 | // ptr points to a valid memory block |
---|
303 | // free points to either: |
---|
304 | // 0 if there are no more free chunks |
---|
305 | // the first free chunk in this or some next memory block |
---|
306 | // prev_free points to either: |
---|
307 | // the last free chunk in some previous memory block |
---|
308 | // 0 if there is no such free chunk |
---|
309 | // prev is either: |
---|
310 | // the PODptr whose next() is ptr |
---|
311 | // !valid() if there is no such PODptr |
---|
312 | |
---|
313 | // If there are no more free memory chunks, then every remaining |
---|
314 | // block is allocated out to its fullest capacity, and we can't |
---|
315 | // release any more memory |
---|
316 | if (free == 0) |
---|
317 | return ret; |
---|
318 | |
---|
319 | // We have to check all the chunks. If they are *all* free (i.e., present |
---|
320 | // in the free list), then we can free the block. |
---|
321 | bool all_chunks_free = true; |
---|
322 | |
---|
323 | // Iterate 'i' through all chunks in the memory block |
---|
324 | // if free starts in the memory block, be careful to keep it there |
---|
325 | void * saved_free = free; |
---|
326 | for (char * i = ptr.begin(); i != ptr.end(); i += partition_size) |
---|
327 | { |
---|
328 | // If this chunk is not free |
---|
329 | if (i != free) |
---|
330 | { |
---|
331 | // We won't be able to free this block |
---|
332 | all_chunks_free = false; |
---|
333 | |
---|
334 | // free might have travelled outside ptr |
---|
335 | free = saved_free; |
---|
336 | // Abort searching the chunks; we won't be able to free this |
---|
337 | // block because a chunk is not free. |
---|
338 | break; |
---|
339 | } |
---|
340 | |
---|
341 | // We do not increment prev_free because we are in the same block |
---|
342 | free = nextof(free); |
---|
343 | } |
---|
344 | |
---|
345 | // post: if the memory block has any chunks, free points to one of them |
---|
346 | // otherwise, our assertions above are still valid |
---|
347 | |
---|
348 | const details::PODptr<size_type> next = ptr.next(); |
---|
349 | |
---|
350 | if (!all_chunks_free) |
---|
351 | { |
---|
352 | if (is_from(free, ptr.begin(), ptr.element_size())) |
---|
353 | { |
---|
354 | std::less<void *> lt; |
---|
355 | void * const end = ptr.end(); |
---|
356 | do |
---|
357 | { |
---|
358 | prev_free = free; |
---|
359 | free = nextof(free); |
---|
360 | } while (free && lt(free, end)); |
---|
361 | } |
---|
362 | // This invariant is now restored: |
---|
363 | // free points to the first free chunk in some next memory block, or |
---|
364 | // 0 if there is no such chunk. |
---|
365 | // prev_free points to the last free chunk in this memory block. |
---|
366 | |
---|
367 | // We are just about to advance ptr. Maintain the invariant: |
---|
368 | // prev is the PODptr whose next() is ptr, or !valid() |
---|
369 | // if there is no such PODptr |
---|
370 | prev = ptr; |
---|
371 | } |
---|
372 | else |
---|
373 | { |
---|
374 | // All chunks from this block are free |
---|
375 | |
---|
376 | // Remove block from list |
---|
377 | if (prev.valid()) |
---|
378 | prev.next(next); |
---|
379 | else |
---|
380 | list = next; |
---|
381 | |
---|
382 | // Remove all entries in the free list from this block |
---|
383 | if (prev_free != 0) |
---|
384 | nextof(prev_free) = free; |
---|
385 | else |
---|
386 | this->first = free; |
---|
387 | |
---|
388 | // And release memory |
---|
389 | UserAllocator::free(ptr.begin()); |
---|
390 | ret = true; |
---|
391 | } |
---|
392 | |
---|
393 | // Increment ptr |
---|
394 | ptr = next; |
---|
395 | } |
---|
396 | |
---|
397 | return ret; |
---|
398 | } |
---|
399 | |
---|
400 | template <typename UserAllocator> |
---|
401 | bool pool<UserAllocator>::purge_memory() |
---|
402 | { |
---|
403 | details::PODptr<size_type> iter = list; |
---|
404 | |
---|
405 | if (!iter.valid()) |
---|
406 | return false; |
---|
407 | |
---|
408 | do |
---|
409 | { |
---|
410 | // hold "next" pointer |
---|
411 | const details::PODptr<size_type> next = iter.next(); |
---|
412 | |
---|
413 | // delete the storage |
---|
414 | UserAllocator::free(iter.begin()); |
---|
415 | |
---|
416 | // increment iter |
---|
417 | iter = next; |
---|
418 | } while (iter.valid()); |
---|
419 | |
---|
420 | list.invalidate(); |
---|
421 | this->first = 0; |
---|
422 | |
---|
423 | return true; |
---|
424 | } |
---|
425 | |
---|
426 | template <typename UserAllocator> |
---|
427 | void * pool<UserAllocator>::malloc_need_resize() |
---|
428 | { |
---|
429 | // No memory in any of our storages; make a new storage, |
---|
430 | const size_type partition_size = alloc_size(); |
---|
431 | const size_type POD_size = next_size * partition_size + |
---|
432 | details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type); |
---|
433 | char * const ptr = UserAllocator::malloc(POD_size); |
---|
434 | if (ptr == 0) |
---|
435 | return 0; |
---|
436 | const details::PODptr<size_type> node(ptr, POD_size); |
---|
437 | next_size <<= 1; |
---|
438 | |
---|
439 | // initialize it, |
---|
440 | store().add_block(node.begin(), node.element_size(), partition_size); |
---|
441 | |
---|
442 | // insert it into the list, |
---|
443 | node.next(list); |
---|
444 | list = node; |
---|
445 | |
---|
446 | // and return a chunk from it. |
---|
447 | return store().malloc(); |
---|
448 | } |
---|
449 | |
---|
450 | template <typename UserAllocator> |
---|
451 | void * pool<UserAllocator>::ordered_malloc_need_resize() |
---|
452 | { |
---|
453 | // No memory in any of our storages; make a new storage, |
---|
454 | const size_type partition_size = alloc_size(); |
---|
455 | const size_type POD_size = next_size * partition_size + |
---|
456 | details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type); |
---|
457 | char * const ptr = UserAllocator::malloc(POD_size); |
---|
458 | if (ptr == 0) |
---|
459 | return 0; |
---|
460 | const details::PODptr<size_type> node(ptr, POD_size); |
---|
461 | next_size <<= 1; |
---|
462 | |
---|
463 | // initialize it, |
---|
464 | // (we can use "add_block" here because we know that |
---|
465 | // the free list is empty, so we don't have to use |
---|
466 | // the slower ordered version) |
---|
467 | store().add_block(node.begin(), node.element_size(), partition_size); |
---|
468 | |
---|
469 | // insert it into the list, |
---|
470 | // handle border case |
---|
471 | if (!list.valid() || std::greater<void *>()(list.begin(), node.begin())) |
---|
472 | { |
---|
473 | node.next(list); |
---|
474 | list = node; |
---|
475 | } |
---|
476 | else |
---|
477 | { |
---|
478 | details::PODptr<size_type> prev = list; |
---|
479 | |
---|
480 | while (true) |
---|
481 | { |
---|
482 | // if we're about to hit the end or |
---|
483 | // if we've found where "node" goes |
---|
484 | if (prev.next_ptr() == 0 |
---|
485 | || std::greater<void *>()(prev.next_ptr(), node.begin())) |
---|
486 | break; |
---|
487 | |
---|
488 | prev = prev.next(); |
---|
489 | } |
---|
490 | |
---|
491 | node.next(prev.next()); |
---|
492 | prev.next(node); |
---|
493 | } |
---|
494 | |
---|
495 | // and return a chunk from it. |
---|
496 | return store().malloc(); |
---|
497 | } |
---|
498 | |
---|
499 | template <typename UserAllocator> |
---|
500 | void * pool<UserAllocator>::ordered_malloc(const size_type n) |
---|
501 | { |
---|
502 | const size_type partition_size = alloc_size(); |
---|
503 | const size_type total_req_size = n * requested_size; |
---|
504 | const size_type num_chunks = total_req_size / partition_size + |
---|
505 | static_cast<bool>(total_req_size % partition_size); |
---|
506 | |
---|
507 | void * ret = store().malloc_n(num_chunks, partition_size); |
---|
508 | |
---|
509 | if (ret != 0) |
---|
510 | return ret; |
---|
511 | |
---|
512 | // Not enougn memory in our storages; make a new storage, |
---|
513 | BOOST_USING_STD_MAX(); |
---|
514 | next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks); |
---|
515 | const size_type POD_size = next_size * partition_size + |
---|
516 | details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type); |
---|
517 | char * const ptr = UserAllocator::malloc(POD_size); |
---|
518 | if (ptr == 0) |
---|
519 | return 0; |
---|
520 | const details::PODptr<size_type> node(ptr, POD_size); |
---|
521 | |
---|
522 | // Split up block so we can use what wasn't requested |
---|
523 | // (we can use "add_block" here because we know that |
---|
524 | // the free list is empty, so we don't have to use |
---|
525 | // the slower ordered version) |
---|
526 | if (next_size > num_chunks) |
---|
527 | store().add_block(node.begin() + num_chunks * partition_size, |
---|
528 | node.element_size() - num_chunks * partition_size, partition_size); |
---|
529 | |
---|
530 | next_size <<= 1; |
---|
531 | |
---|
532 | // insert it into the list, |
---|
533 | // handle border case |
---|
534 | if (!list.valid() || std::greater<void *>()(list.begin(), node.begin())) |
---|
535 | { |
---|
536 | node.next(list); |
---|
537 | list = node; |
---|
538 | } |
---|
539 | else |
---|
540 | { |
---|
541 | details::PODptr<size_type> prev = list; |
---|
542 | |
---|
543 | while (true) |
---|
544 | { |
---|
545 | // if we're about to hit the end or |
---|
546 | // if we've found where "node" goes |
---|
547 | if (prev.next_ptr() == 0 |
---|
548 | || std::greater<void *>()(prev.next_ptr(), node.begin())) |
---|
549 | break; |
---|
550 | |
---|
551 | prev = prev.next(); |
---|
552 | } |
---|
553 | |
---|
554 | node.next(prev.next()); |
---|
555 | prev.next(node); |
---|
556 | } |
---|
557 | |
---|
558 | // and return it. |
---|
559 | return node.begin(); |
---|
560 | } |
---|
561 | |
---|
562 | template <typename UserAllocator> |
---|
563 | details::PODptr<typename pool<UserAllocator>::size_type> |
---|
564 | pool<UserAllocator>::find_POD(void * const chunk) const |
---|
565 | { |
---|
566 | // We have to find which storage this chunk is from. |
---|
567 | details::PODptr<size_type> iter = list; |
---|
568 | while (iter.valid()) |
---|
569 | { |
---|
570 | if (is_from(chunk, iter.begin(), iter.element_size())) |
---|
571 | return iter; |
---|
572 | iter = iter.next(); |
---|
573 | } |
---|
574 | |
---|
575 | return iter; |
---|
576 | } |
---|
577 | |
---|
578 | } // namespace boost |
---|
579 | |
---|
580 | #endif |
---|