[12] | 1 | // Boost rational.hpp header file ------------------------------------------// |
---|
| 2 | |
---|
| 3 | // (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and |
---|
| 4 | // distribute this software is granted provided this copyright notice appears |
---|
| 5 | // in all copies. This software is provided "as is" without express or |
---|
| 6 | // implied warranty, and with no claim as to its suitability for any purpose. |
---|
| 7 | |
---|
| 8 | // See http://www.boost.org/libs/rational for documentation. |
---|
| 9 | |
---|
| 10 | // Credits: |
---|
| 11 | // Thanks to the boost mailing list in general for useful comments. |
---|
| 12 | // Particular contributions included: |
---|
| 13 | // Andrew D Jewell, for reminding me to take care to avoid overflow |
---|
| 14 | // Ed Brey, for many comments, including picking up on some dreadful typos |
---|
| 15 | // Stephen Silver contributed the test suite and comments on user-defined |
---|
| 16 | // IntType |
---|
| 17 | // Nickolay Mladenov, for the implementation of operator+= |
---|
| 18 | |
---|
| 19 | // Revision History |
---|
| 20 | // 28 Sep 02 Use _left versions of operators from operators.hpp |
---|
| 21 | // 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel) |
---|
| 22 | // 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams) |
---|
| 23 | // 05 Feb 01 Update operator>> to tighten up input syntax |
---|
| 24 | // 05 Feb 01 Final tidy up of gcd code prior to the new release |
---|
| 25 | // 27 Jan 01 Recode abs() without relying on abs(IntType) |
---|
| 26 | // 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm, |
---|
| 27 | // tidy up a number of areas, use newer features of operators.hpp |
---|
| 28 | // (reduces space overhead to zero), add operator!, |
---|
| 29 | // introduce explicit mixed-mode arithmetic operations |
---|
| 30 | // 12 Jan 01 Include fixes to handle a user-defined IntType better |
---|
| 31 | // 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David) |
---|
| 32 | // 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++ |
---|
| 33 | // 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not |
---|
| 34 | // affected (Beman Dawes) |
---|
| 35 | // 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer) |
---|
| 36 | // 14 Dec 99 Modifications based on comments from the boost list |
---|
| 37 | // 09 Dec 99 Initial Version (Paul Moore) |
---|
| 38 | |
---|
| 39 | #ifndef BOOST_RATIONAL_HPP |
---|
| 40 | #define BOOST_RATIONAL_HPP |
---|
| 41 | |
---|
| 42 | #include <iostream> // for std::istream and std::ostream |
---|
| 43 | #include <iomanip> // for std::noskipws |
---|
| 44 | #include <stdexcept> // for std::domain_error |
---|
| 45 | #include <string> // for std::string implicit constructor |
---|
| 46 | #include <boost/operators.hpp> // for boost::addable etc |
---|
| 47 | #include <cstdlib> // for std::abs |
---|
| 48 | #include <boost/call_traits.hpp> // for boost::call_traits |
---|
| 49 | #include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC |
---|
| 50 | |
---|
| 51 | namespace boost { |
---|
| 52 | |
---|
| 53 | // Note: We use n and m as temporaries in this function, so there is no value |
---|
| 54 | // in using const IntType& as we would only need to make a copy anyway... |
---|
| 55 | template <typename IntType> |
---|
| 56 | IntType gcd(IntType n, IntType m) |
---|
| 57 | { |
---|
| 58 | // Avoid repeated construction |
---|
| 59 | IntType zero(0); |
---|
| 60 | |
---|
| 61 | // This is abs() - given the existence of broken compilers with Koenig |
---|
| 62 | // lookup issues and other problems, I code this explicitly. (Remember, |
---|
| 63 | // IntType may be a user-defined type). |
---|
| 64 | if (n < zero) |
---|
| 65 | n = -n; |
---|
| 66 | if (m < zero) |
---|
| 67 | m = -m; |
---|
| 68 | |
---|
| 69 | // As n and m are now positive, we can be sure that %= returns a |
---|
| 70 | // positive value (the standard guarantees this for built-in types, |
---|
| 71 | // and we require it of user-defined types). |
---|
| 72 | for(;;) { |
---|
| 73 | if(m == zero) |
---|
| 74 | return n; |
---|
| 75 | n %= m; |
---|
| 76 | if(n == zero) |
---|
| 77 | return m; |
---|
| 78 | m %= n; |
---|
| 79 | } |
---|
| 80 | } |
---|
| 81 | |
---|
| 82 | template <typename IntType> |
---|
| 83 | IntType lcm(IntType n, IntType m) |
---|
| 84 | { |
---|
| 85 | // Avoid repeated construction |
---|
| 86 | IntType zero(0); |
---|
| 87 | |
---|
| 88 | if (n == zero || m == zero) |
---|
| 89 | return zero; |
---|
| 90 | |
---|
| 91 | n /= gcd(n, m); |
---|
| 92 | n *= m; |
---|
| 93 | |
---|
| 94 | if (n < zero) |
---|
| 95 | n = -n; |
---|
| 96 | return n; |
---|
| 97 | } |
---|
| 98 | |
---|
| 99 | class bad_rational : public std::domain_error |
---|
| 100 | { |
---|
| 101 | public: |
---|
| 102 | explicit bad_rational() : std::domain_error("bad rational: zero denominator") {} |
---|
| 103 | }; |
---|
| 104 | |
---|
| 105 | template <typename IntType> |
---|
| 106 | class rational; |
---|
| 107 | |
---|
| 108 | template <typename IntType> |
---|
| 109 | rational<IntType> abs(const rational<IntType>& r); |
---|
| 110 | |
---|
| 111 | template <typename IntType> |
---|
| 112 | class rational : |
---|
| 113 | less_than_comparable < rational<IntType>, |
---|
| 114 | equality_comparable < rational<IntType>, |
---|
| 115 | less_than_comparable2 < rational<IntType>, IntType, |
---|
| 116 | equality_comparable2 < rational<IntType>, IntType, |
---|
| 117 | addable < rational<IntType>, |
---|
| 118 | subtractable < rational<IntType>, |
---|
| 119 | multipliable < rational<IntType>, |
---|
| 120 | dividable < rational<IntType>, |
---|
| 121 | addable2 < rational<IntType>, IntType, |
---|
| 122 | subtractable2 < rational<IntType>, IntType, |
---|
| 123 | subtractable2_left < rational<IntType>, IntType, |
---|
| 124 | multipliable2 < rational<IntType>, IntType, |
---|
| 125 | dividable2 < rational<IntType>, IntType, |
---|
| 126 | dividable2_left < rational<IntType>, IntType, |
---|
| 127 | incrementable < rational<IntType>, |
---|
| 128 | decrementable < rational<IntType> |
---|
| 129 | > > > > > > > > > > > > > > > > |
---|
| 130 | { |
---|
| 131 | typedef typename boost::call_traits<IntType>::param_type param_type; |
---|
| 132 | public: |
---|
| 133 | typedef IntType int_type; |
---|
| 134 | rational() : num(0), den(1) {} |
---|
| 135 | rational(param_type n) : num(n), den(1) {} |
---|
| 136 | rational(param_type n, param_type d) : num(n), den(d) { normalize(); } |
---|
| 137 | |
---|
| 138 | // Default copy constructor and assignment are fine |
---|
| 139 | |
---|
| 140 | // Add assignment from IntType |
---|
| 141 | rational& operator=(param_type n) { return assign(n, 1); } |
---|
| 142 | |
---|
| 143 | // Assign in place |
---|
| 144 | rational& assign(param_type n, param_type d); |
---|
| 145 | |
---|
| 146 | // Access to representation |
---|
| 147 | IntType numerator() const { return num; } |
---|
| 148 | IntType denominator() const { return den; } |
---|
| 149 | |
---|
| 150 | // Arithmetic assignment operators |
---|
| 151 | rational& operator+= (const rational& r); |
---|
| 152 | rational& operator-= (const rational& r); |
---|
| 153 | rational& operator*= (const rational& r); |
---|
| 154 | rational& operator/= (const rational& r); |
---|
| 155 | |
---|
| 156 | rational& operator+= (param_type i); |
---|
| 157 | rational& operator-= (param_type i); |
---|
| 158 | rational& operator*= (param_type i); |
---|
| 159 | rational& operator/= (param_type i); |
---|
| 160 | |
---|
| 161 | // Increment and decrement |
---|
| 162 | const rational& operator++(); |
---|
| 163 | const rational& operator--(); |
---|
| 164 | |
---|
| 165 | // Operator not |
---|
| 166 | bool operator!() const { return !num; } |
---|
| 167 | |
---|
| 168 | // Comparison operators |
---|
| 169 | bool operator< (const rational& r) const; |
---|
| 170 | bool operator== (const rational& r) const; |
---|
| 171 | |
---|
| 172 | bool operator< (param_type i) const; |
---|
| 173 | bool operator> (param_type i) const; |
---|
| 174 | bool operator== (param_type i) const; |
---|
| 175 | |
---|
| 176 | private: |
---|
| 177 | // Implementation - numerator and denominator (normalized). |
---|
| 178 | // Other possibilities - separate whole-part, or sign, fields? |
---|
| 179 | IntType num; |
---|
| 180 | IntType den; |
---|
| 181 | |
---|
| 182 | // Representation note: Fractions are kept in normalized form at all |
---|
| 183 | // times. normalized form is defined as gcd(num,den) == 1 and den > 0. |
---|
| 184 | // In particular, note that the implementation of abs() below relies |
---|
| 185 | // on den always being positive. |
---|
| 186 | void normalize(); |
---|
| 187 | }; |
---|
| 188 | |
---|
| 189 | // Assign in place |
---|
| 190 | template <typename IntType> |
---|
| 191 | inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d) |
---|
| 192 | { |
---|
| 193 | num = n; |
---|
| 194 | den = d; |
---|
| 195 | normalize(); |
---|
| 196 | return *this; |
---|
| 197 | } |
---|
| 198 | |
---|
| 199 | // Unary plus and minus |
---|
| 200 | template <typename IntType> |
---|
| 201 | inline rational<IntType> operator+ (const rational<IntType>& r) |
---|
| 202 | { |
---|
| 203 | return r; |
---|
| 204 | } |
---|
| 205 | |
---|
| 206 | template <typename IntType> |
---|
| 207 | inline rational<IntType> operator- (const rational<IntType>& r) |
---|
| 208 | { |
---|
| 209 | return rational<IntType>(-r.numerator(), r.denominator()); |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | // Arithmetic assignment operators |
---|
| 213 | template <typename IntType> |
---|
| 214 | rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r) |
---|
| 215 | { |
---|
| 216 | // This calculation avoids overflow, and minimises the number of expensive |
---|
| 217 | // calculations. Thanks to Nickolay Mladenov for this algorithm. |
---|
| 218 | // |
---|
| 219 | // Proof: |
---|
| 220 | // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1. |
---|
| 221 | // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1 |
---|
| 222 | // |
---|
| 223 | // The result is (a*d1 + c*b1) / (b1*d1*g). |
---|
| 224 | // Now we have to normalize this ratio. |
---|
| 225 | // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1 |
---|
| 226 | // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a. |
---|
| 227 | // But since gcd(a,b1)=1 we have h=1. |
---|
| 228 | // Similarly h|d1 leads to h=1. |
---|
| 229 | // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g |
---|
| 230 | // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g) |
---|
| 231 | // Which proves that instead of normalizing the result, it is better to |
---|
| 232 | // divide num and den by gcd((a*d1 + c*b1), g) |
---|
| 233 | |
---|
| 234 | // Protect against self-modification |
---|
| 235 | IntType r_num = r.num; |
---|
| 236 | IntType r_den = r.den; |
---|
| 237 | |
---|
| 238 | IntType g = gcd(den, r_den); |
---|
| 239 | den /= g; // = b1 from the calculations above |
---|
| 240 | num = num * (r_den / g) + r_num * den; |
---|
| 241 | g = gcd(num, g); |
---|
| 242 | num /= g; |
---|
| 243 | den *= r_den/g; |
---|
| 244 | |
---|
| 245 | return *this; |
---|
| 246 | } |
---|
| 247 | |
---|
| 248 | template <typename IntType> |
---|
| 249 | rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r) |
---|
| 250 | { |
---|
| 251 | // Protect against self-modification |
---|
| 252 | IntType r_num = r.num; |
---|
| 253 | IntType r_den = r.den; |
---|
| 254 | |
---|
| 255 | // This calculation avoids overflow, and minimises the number of expensive |
---|
| 256 | // calculations. It corresponds exactly to the += case above |
---|
| 257 | IntType g = gcd(den, r_den); |
---|
| 258 | den /= g; |
---|
| 259 | num = num * (r_den / g) - r_num * den; |
---|
| 260 | g = gcd(num, g); |
---|
| 261 | num /= g; |
---|
| 262 | den *= r_den/g; |
---|
| 263 | |
---|
| 264 | return *this; |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | template <typename IntType> |
---|
| 268 | rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r) |
---|
| 269 | { |
---|
| 270 | // Protect against self-modification |
---|
| 271 | IntType r_num = r.num; |
---|
| 272 | IntType r_den = r.den; |
---|
| 273 | |
---|
| 274 | // Avoid overflow and preserve normalization |
---|
| 275 | IntType gcd1 = gcd<IntType>(num, r_den); |
---|
| 276 | IntType gcd2 = gcd<IntType>(r_num, den); |
---|
| 277 | num = (num/gcd1) * (r_num/gcd2); |
---|
| 278 | den = (den/gcd2) * (r_den/gcd1); |
---|
| 279 | return *this; |
---|
| 280 | } |
---|
| 281 | |
---|
| 282 | template <typename IntType> |
---|
| 283 | rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r) |
---|
| 284 | { |
---|
| 285 | // Protect against self-modification |
---|
| 286 | IntType r_num = r.num; |
---|
| 287 | IntType r_den = r.den; |
---|
| 288 | |
---|
| 289 | // Avoid repeated construction |
---|
| 290 | IntType zero(0); |
---|
| 291 | |
---|
| 292 | // Trap division by zero |
---|
| 293 | if (r_num == zero) |
---|
| 294 | throw bad_rational(); |
---|
| 295 | if (num == zero) |
---|
| 296 | return *this; |
---|
| 297 | |
---|
| 298 | // Avoid overflow and preserve normalization |
---|
| 299 | IntType gcd1 = gcd<IntType>(num, r_num); |
---|
| 300 | IntType gcd2 = gcd<IntType>(r_den, den); |
---|
| 301 | num = (num/gcd1) * (r_den/gcd2); |
---|
| 302 | den = (den/gcd2) * (r_num/gcd1); |
---|
| 303 | |
---|
| 304 | if (den < zero) { |
---|
| 305 | num = -num; |
---|
| 306 | den = -den; |
---|
| 307 | } |
---|
| 308 | return *this; |
---|
| 309 | } |
---|
| 310 | |
---|
| 311 | // Mixed-mode operators |
---|
| 312 | template <typename IntType> |
---|
| 313 | inline rational<IntType>& |
---|
| 314 | rational<IntType>::operator+= (param_type i) |
---|
| 315 | { |
---|
| 316 | return operator+= (rational<IntType>(i)); |
---|
| 317 | } |
---|
| 318 | |
---|
| 319 | template <typename IntType> |
---|
| 320 | inline rational<IntType>& |
---|
| 321 | rational<IntType>::operator-= (param_type i) |
---|
| 322 | { |
---|
| 323 | return operator-= (rational<IntType>(i)); |
---|
| 324 | } |
---|
| 325 | |
---|
| 326 | template <typename IntType> |
---|
| 327 | inline rational<IntType>& |
---|
| 328 | rational<IntType>::operator*= (param_type i) |
---|
| 329 | { |
---|
| 330 | return operator*= (rational<IntType>(i)); |
---|
| 331 | } |
---|
| 332 | |
---|
| 333 | template <typename IntType> |
---|
| 334 | inline rational<IntType>& |
---|
| 335 | rational<IntType>::operator/= (param_type i) |
---|
| 336 | { |
---|
| 337 | return operator/= (rational<IntType>(i)); |
---|
| 338 | } |
---|
| 339 | |
---|
| 340 | // Increment and decrement |
---|
| 341 | template <typename IntType> |
---|
| 342 | inline const rational<IntType>& rational<IntType>::operator++() |
---|
| 343 | { |
---|
| 344 | // This can never denormalise the fraction |
---|
| 345 | num += den; |
---|
| 346 | return *this; |
---|
| 347 | } |
---|
| 348 | |
---|
| 349 | template <typename IntType> |
---|
| 350 | inline const rational<IntType>& rational<IntType>::operator--() |
---|
| 351 | { |
---|
| 352 | // This can never denormalise the fraction |
---|
| 353 | num -= den; |
---|
| 354 | return *this; |
---|
| 355 | } |
---|
| 356 | |
---|
| 357 | // Comparison operators |
---|
| 358 | template <typename IntType> |
---|
| 359 | bool rational<IntType>::operator< (const rational<IntType>& r) const |
---|
| 360 | { |
---|
| 361 | // Avoid repeated construction |
---|
| 362 | IntType zero(0); |
---|
| 363 | |
---|
| 364 | // If the two values have different signs, we don't need to do the |
---|
| 365 | // expensive calculations below. We take advantage here of the fact |
---|
| 366 | // that the denominator is always positive. |
---|
| 367 | if (num < zero && r.num >= zero) // -ve < +ve |
---|
| 368 | return true; |
---|
| 369 | if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero |
---|
| 370 | return false; |
---|
| 371 | |
---|
| 372 | // Avoid overflow |
---|
| 373 | IntType gcd1 = gcd<IntType>(num, r.num); |
---|
| 374 | IntType gcd2 = gcd<IntType>(r.den, den); |
---|
| 375 | return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1); |
---|
| 376 | } |
---|
| 377 | |
---|
| 378 | template <typename IntType> |
---|
| 379 | bool rational<IntType>::operator< (param_type i) const |
---|
| 380 | { |
---|
| 381 | // Avoid repeated construction |
---|
| 382 | IntType zero(0); |
---|
| 383 | |
---|
| 384 | // If the two values have different signs, we don't need to do the |
---|
| 385 | // expensive calculations below. We take advantage here of the fact |
---|
| 386 | // that the denominator is always positive. |
---|
| 387 | if (num < zero && i >= zero) // -ve < +ve |
---|
| 388 | return true; |
---|
| 389 | if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero |
---|
| 390 | return false; |
---|
| 391 | |
---|
| 392 | // Now, use the fact that n/d truncates towards zero as long as n and d |
---|
| 393 | // are both positive. |
---|
| 394 | // Divide instead of multiplying to avoid overflow issues. Of course, |
---|
| 395 | // division may be slower, but accuracy is more important than speed... |
---|
| 396 | if (num > zero) |
---|
| 397 | return (num/den) < i; |
---|
| 398 | else |
---|
| 399 | return -i < (-num/den); |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | template <typename IntType> |
---|
| 403 | bool rational<IntType>::operator> (param_type i) const |
---|
| 404 | { |
---|
| 405 | // Trap equality first |
---|
| 406 | if (num == i && den == IntType(1)) |
---|
| 407 | return false; |
---|
| 408 | |
---|
| 409 | // Otherwise, we can use operator< |
---|
| 410 | return !operator<(i); |
---|
| 411 | } |
---|
| 412 | |
---|
| 413 | template <typename IntType> |
---|
| 414 | inline bool rational<IntType>::operator== (const rational<IntType>& r) const |
---|
| 415 | { |
---|
| 416 | return ((num == r.num) && (den == r.den)); |
---|
| 417 | } |
---|
| 418 | |
---|
| 419 | template <typename IntType> |
---|
| 420 | inline bool rational<IntType>::operator== (param_type i) const |
---|
| 421 | { |
---|
| 422 | return ((den == IntType(1)) && (num == i)); |
---|
| 423 | } |
---|
| 424 | |
---|
| 425 | // Normalisation |
---|
| 426 | template <typename IntType> |
---|
| 427 | void rational<IntType>::normalize() |
---|
| 428 | { |
---|
| 429 | // Avoid repeated construction |
---|
| 430 | IntType zero(0); |
---|
| 431 | |
---|
| 432 | if (den == zero) |
---|
| 433 | throw bad_rational(); |
---|
| 434 | |
---|
| 435 | // Handle the case of zero separately, to avoid division by zero |
---|
| 436 | if (num == zero) { |
---|
| 437 | den = IntType(1); |
---|
| 438 | return; |
---|
| 439 | } |
---|
| 440 | |
---|
| 441 | IntType g = gcd<IntType>(num, den); |
---|
| 442 | |
---|
| 443 | num /= g; |
---|
| 444 | den /= g; |
---|
| 445 | |
---|
| 446 | // Ensure that the denominator is positive |
---|
| 447 | if (den < zero) { |
---|
| 448 | num = -num; |
---|
| 449 | den = -den; |
---|
| 450 | } |
---|
| 451 | } |
---|
| 452 | |
---|
| 453 | namespace detail { |
---|
| 454 | |
---|
| 455 | // A utility class to reset the format flags for an istream at end |
---|
| 456 | // of scope, even in case of exceptions |
---|
| 457 | struct resetter { |
---|
| 458 | resetter(std::istream& is) : is_(is), f_(is.flags()) {} |
---|
| 459 | ~resetter() { is_.flags(f_); } |
---|
| 460 | std::istream& is_; |
---|
| 461 | std::istream::fmtflags f_; // old GNU c++ lib has no ios_base |
---|
| 462 | }; |
---|
| 463 | |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | // Input and output |
---|
| 467 | template <typename IntType> |
---|
| 468 | std::istream& operator>> (std::istream& is, rational<IntType>& r) |
---|
| 469 | { |
---|
| 470 | IntType n = IntType(0), d = IntType(1); |
---|
| 471 | char c = 0; |
---|
| 472 | detail::resetter sentry(is); |
---|
| 473 | |
---|
| 474 | is >> n; |
---|
| 475 | c = is.get(); |
---|
| 476 | |
---|
| 477 | if (c != '/') |
---|
| 478 | is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base |
---|
| 479 | |
---|
| 480 | #if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT |
---|
| 481 | is >> std::noskipws; |
---|
| 482 | #else |
---|
| 483 | is.unsetf(ios::skipws); // compiles, but seems to have no effect. |
---|
| 484 | #endif |
---|
| 485 | is >> d; |
---|
| 486 | |
---|
| 487 | if (is) |
---|
| 488 | r.assign(n, d); |
---|
| 489 | |
---|
| 490 | return is; |
---|
| 491 | } |
---|
| 492 | |
---|
| 493 | // Add manipulators for output format? |
---|
| 494 | template <typename IntType> |
---|
| 495 | std::ostream& operator<< (std::ostream& os, const rational<IntType>& r) |
---|
| 496 | { |
---|
| 497 | os << r.numerator() << '/' << r.denominator(); |
---|
| 498 | return os; |
---|
| 499 | } |
---|
| 500 | |
---|
| 501 | // Type conversion |
---|
| 502 | template <typename T, typename IntType> |
---|
| 503 | inline T rational_cast(const rational<IntType>& src) |
---|
| 504 | { |
---|
| 505 | return static_cast<T>(src.numerator())/src.denominator(); |
---|
| 506 | } |
---|
| 507 | |
---|
| 508 | // Do not use any abs() defined on IntType - it isn't worth it, given the |
---|
| 509 | // difficulties involved (Koenig lookup required, there may not *be* an abs() |
---|
| 510 | // defined, etc etc). |
---|
| 511 | template <typename IntType> |
---|
| 512 | inline rational<IntType> abs(const rational<IntType>& r) |
---|
| 513 | { |
---|
| 514 | if (r.numerator() >= IntType(0)) |
---|
| 515 | return r; |
---|
| 516 | |
---|
| 517 | return rational<IntType>(-r.numerator(), r.denominator()); |
---|
| 518 | } |
---|
| 519 | |
---|
| 520 | } // namespace boost |
---|
| 521 | |
---|
| 522 | #endif // BOOST_RATIONAL_HPP |
---|
| 523 | |
---|