1 | <?xml version="1.0" encoding="utf-8"?> |
---|
2 | <!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN" |
---|
3 | "http://www.boost.org/tools/boostbook/dtd/boostbook.dtd"> |
---|
4 | <section id="function.faq" last-revision="$Date: 2004/02/18 06:37:13 $"> |
---|
5 | <title>Frequently Asked Questions</title> |
---|
6 | |
---|
7 | <qandaset> |
---|
8 | <qandaentry> |
---|
9 | <question><para>Why can't I compare |
---|
10 | <classname>boost::function</classname> objects with |
---|
11 | <code>operator==</code> or |
---|
12 | <code>operator!=</code>?</para></question> |
---|
13 | |
---|
14 | <answer> |
---|
15 | <para>Comparison between <classname>boost::function</classname> |
---|
16 | objects cannot be implemented "well", and therefore will not be |
---|
17 | implemented. The typical semantics requested for <code>f == |
---|
18 | g</code> given <classname>boost::function</classname> objects |
---|
19 | <code>f</code> and <code>g</code> are:</para> |
---|
20 | <itemizedlist> |
---|
21 | <listitem><simpara>If <code>f</code> and <code>g</code> |
---|
22 | store function objects of the same type, use that type's |
---|
23 | <code>operator==</code> to compare |
---|
24 | them.</simpara></listitem> |
---|
25 | |
---|
26 | <listitem><simpara>If <code>f</code> and <code>g</code> |
---|
27 | store function objects of different types, return |
---|
28 | <code>false</code>.</simpara></listitem> |
---|
29 | </itemizedlist> |
---|
30 | <para>The problem occurs when the type of the function objects |
---|
31 | stored by both <code>f</code> and <code>g</code> doesn't have an |
---|
32 | <code>operator==</code>: we would like the expression <code>f == |
---|
33 | g</code> to fail to compile, as occurs with, e.g., the standard |
---|
34 | containers. However, this is not implementable for |
---|
35 | <classname>boost::function</classname> because it necessarily |
---|
36 | "erases" some type information after it has been assigned a |
---|
37 | function object, so it cannot try to call |
---|
38 | <code>operator==</code> later: it must either find a way to call |
---|
39 | <code>operator==</code> now, or it will never be able to call it |
---|
40 | later. Note, for instance, what happens if you try to put a |
---|
41 | <code>float</code> value into a |
---|
42 | <classname>boost::function</classname> object: you will get an |
---|
43 | error at the assignment operator or constructor, not in |
---|
44 | <code>operator()</code>, because the function-call expression |
---|
45 | must be bound in the constructor or assignment operator.</para> |
---|
46 | |
---|
47 | <para>The most promising approach is to find a method of |
---|
48 | determining if <code>operator==</code> can be called for a |
---|
49 | particular type, and then supporting it only when it is |
---|
50 | available; in other situations, an exception would be |
---|
51 | thrown. However, to date there is no known way to detect if an |
---|
52 | arbitrary operator expression <code>f == g</code> is suitably |
---|
53 | defined. The best solution known has the following undesirable |
---|
54 | qualities:</para> |
---|
55 | |
---|
56 | <orderedlist> |
---|
57 | <listitem><simpara>Fails at compile-time for objects where |
---|
58 | <code>operator==</code> is not accessible (e.g., because it is |
---|
59 | <code>private</code>).</simpara></listitem> |
---|
60 | |
---|
61 | <listitem><simpara>Fails at compile-time if calling |
---|
62 | <code>operator==</code> is ambiguous.</simpara></listitem> |
---|
63 | |
---|
64 | <listitem><simpara>Appears to be correct if the |
---|
65 | <code>operator==</code> declaration is correct, even though |
---|
66 | <code>operator==</code> may not compile.</simpara></listitem> |
---|
67 | </orderedlist> |
---|
68 | |
---|
69 | <para>All of these problems translate into failures in the |
---|
70 | <classname>boost::function</classname> constructors or |
---|
71 | assignment operator, <emphasis>even if the user never invokes |
---|
72 | operator==</emphasis>. We can't do that to users.</para> |
---|
73 | |
---|
74 | <para>The other option is to place the burden on users that want |
---|
75 | to use <code>operator==</code>, e.g., by providing an |
---|
76 | <code>is_equality_comparable</code> trait they may |
---|
77 | specialize. This is a workable solution, but is dangerous in |
---|
78 | practice, because forgetting to specialize the trait will result |
---|
79 | in unexpected exceptions being thrown from |
---|
80 | <classname>boost::function</classname>'s |
---|
81 | <code>operator==</code>. This essentially negates the usefulness |
---|
82 | of <code>operator==</code> in the context in which it is most |
---|
83 | desired: multitarget callbacks. The |
---|
84 | <libraryname>Signals</libraryname> library has a way around |
---|
85 | this.</para> |
---|
86 | </answer> |
---|
87 | </qandaentry> |
---|
88 | |
---|
89 | <qandaentry> |
---|
90 | <question><para>I see void pointers; is this [mess] type safe?</para></question> |
---|
91 | <answer> |
---|
92 | <para>Yes, <computeroutput>boost::function</computeroutput> is type |
---|
93 | safe even though it uses void pointers and pointers to functions |
---|
94 | returning void and taking no arguments. Essentially, all type |
---|
95 | information is encoded in the functions that manage and invoke |
---|
96 | function pointers and function objects. Only these functions are |
---|
97 | instantiated with the exact type that is pointed to by the void |
---|
98 | pointer or pointer to void function. The reason that both are required |
---|
99 | is that one may cast between void pointers and object pointers safely |
---|
100 | or between different types of function pointers (provided you don't |
---|
101 | invoke a function pointer with the wrong type). </para> |
---|
102 | </answer> |
---|
103 | </qandaentry> |
---|
104 | |
---|
105 | <qandaentry> |
---|
106 | <question><para>Why are there workarounds for void returns? C++ allows them!</para></question> |
---|
107 | <answer><para>Void returns are permitted by the C++ standard, as in this code snippet: |
---|
108 | <programlisting>void f(); |
---|
109 | void g() { return f(); }</programlisting> |
---|
110 | </para> |
---|
111 | |
---|
112 | <para> This is a valid usage of <computeroutput>boost::function</computeroutput> because void returns are not used. With void returns, we would attempting to compile ill-formed code similar to: |
---|
113 | <programlisting>int f(); |
---|
114 | void g() { return f(); }</programlisting> |
---|
115 | </para> |
---|
116 | |
---|
117 | <para> In essence, not using void returns allows |
---|
118 | <computeroutput>boost::function</computeroutput> to swallow a return value. This is |
---|
119 | consistent with allowing the user to assign and invoke functions and |
---|
120 | function objects with parameters that don't exactly match.</para> |
---|
121 | |
---|
122 | </answer> |
---|
123 | </qandaentry> |
---|
124 | |
---|
125 | <qandaentry> |
---|
126 | <question><para>Why (function) cloning?</para></question> |
---|
127 | <answer> |
---|
128 | <para>In November and December of 2000, the issue of cloning |
---|
129 | vs. reference counting was debated at length and it was decided |
---|
130 | that cloning gave more predictable semantics. I won't rehash the |
---|
131 | discussion here, but if it cloning is incorrect for a particular |
---|
132 | application a reference-counting allocator could be used.</para> |
---|
133 | </answer> |
---|
134 | </qandaentry> |
---|
135 | |
---|
136 | <qandaentry> |
---|
137 | <question><para>How much overhead does a call through <code><classname>boost::function</classname></code> incur?</para></question> |
---|
138 | <answer> |
---|
139 | <para>The cost of <code>boost::function</code> can be reasonably |
---|
140 | consistently measured at around 20ns +/- 10 ns on a modern >2GHz |
---|
141 | platform versus directly inlining the code.</para> |
---|
142 | |
---|
143 | <para>However, the performance of your application may benefit |
---|
144 | from or be disadvantaged by <code>boost::function</code> |
---|
145 | depending on how your C++ optimiser optimises. Similar to a |
---|
146 | standard function pointer, differences of order of 10% have been |
---|
147 | noted to the benefit or disadvantage of using |
---|
148 | <code>boost::function</code> to call a function that contains a |
---|
149 | tight loop depending on your compilation circumstances.</para> |
---|
150 | |
---|
151 | <para>[Answer provided by Matt Hurd. See <ulink url="http://article.gmane.org/gmane.comp.lib.boost.devel/33278"/>]</para> |
---|
152 | </answer> |
---|
153 | </qandaentry> |
---|
154 | </qandaset> |
---|
155 | |
---|
156 | </section> |
---|