1 | <HTML> |
---|
2 | <!-- |
---|
3 | -- Copyright (c) Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine 2000 |
---|
4 | -- |
---|
5 | -- Permission to use, copy, modify, distribute and sell this software |
---|
6 | -- and its documentation for any purpose is hereby granted without fee, |
---|
7 | -- provided that the above copyright notice appears in all copies and |
---|
8 | -- that both that copyright notice and this permission notice appear |
---|
9 | -- in supporting documentation. Silicon Graphics makes no |
---|
10 | -- representations about the suitability of this software for any |
---|
11 | -- purpose. It is provided "as is" without express or implied warranty. |
---|
12 | --> |
---|
13 | <Head> |
---|
14 | <Title>Boost Graph Library: Converting Existing Graphs to BGL</Title> |
---|
15 | <BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b" |
---|
16 | ALINK="#ff0000"> |
---|
17 | <IMG SRC="../../../boost.png" |
---|
18 | ALT="C++ Boost" width="277" height="86"> |
---|
19 | |
---|
20 | <BR Clear> |
---|
21 | |
---|
22 | |
---|
23 | <H1><a name="sec:leda-conversion">How to Convert Existing Graphs to BGL</H1> |
---|
24 | |
---|
25 | <P> |
---|
26 | Though the main goal of BGL is to aid the development of new |
---|
27 | applications and graph algorithms, there are quite a few existing codes |
---|
28 | that could benefit from using BGL algorithms. One way to use the BGL |
---|
29 | algorithms with existing graph data structures is to copy data from |
---|
30 | the older graph format into a BGL graph which could then be used in |
---|
31 | the BGL algorithms. The problem with this approach is that it can be |
---|
32 | expensive to make this copy. Another approach is to wrap the existing |
---|
33 | graph data structure with a BGL interface. |
---|
34 | |
---|
35 | <P> |
---|
36 | The Adaptor pattern [<A |
---|
37 | HREF="bibliography.html#gamma95:_design_patterns">12</A>] typically requires |
---|
38 | that the adaptee object be contained inside a new class that provides the |
---|
39 | desired interface. This containment is not required when wrapping a |
---|
40 | graph for BGL because the BGL graph interface consists solely of |
---|
41 | free (global) functions. Instead of creating a new graph class, you |
---|
42 | need to overload all the free functions required by the interface. We |
---|
43 | call this free function wrapper approach <I>external adaptation</I>. |
---|
44 | |
---|
45 | <P> |
---|
46 | One of the more commonly used graph classes is the LEDA parameterized |
---|
47 | <a |
---|
48 | href="http://www.mpi-sb.mpg.de/LEDA/MANUAL/bgraph.html"><TT>GRAPH</TT></a> |
---|
49 | class [<A HREF="bibliography.html#mehlhorn99:_leda">22</A>]. In |
---|
50 | this section we will show how to create a BGL interface for this |
---|
51 | class. The first question is which BGL interfaces (or concepts) we |
---|
52 | should implement. The following concepts are straightforward and easy |
---|
53 | to implement on top of LEDA: <a |
---|
54 | href="./VertexListGraph.html">VertexListGraph</a>, <a |
---|
55 | href="./BidirectionalGraph.html">BidirectionalGraph</a>, and <a |
---|
56 | href="./MutableGraph.html">MutableGraph</a>. |
---|
57 | |
---|
58 | <P> |
---|
59 | All types associated with a BGL graph class are accessed though the |
---|
60 | <TT>graph_traits</TT> class. We can partially specialize this traits |
---|
61 | class for the LEDA <TT>GRAPH</TT> class in the following way. The |
---|
62 | <TT>node</TT> and <TT>edge</TT> are the LEDA types for representing |
---|
63 | vertices and edges. The LEDA <TT>GRAPH</TT> is for directed graphs, so |
---|
64 | we choose <TT>directed_tag</TT> for the <TT>directed_category</TT>. |
---|
65 | The LEDA <TT>GRAPH</TT> does not automatically prevent the insertion |
---|
66 | of parallel edges, so we choose <TT>allow_parallel_edge_tag</TT> for |
---|
67 | the <TT>edge_parallel_category</TT>. The return type for the LEDA |
---|
68 | function <TT>number_of_nodes()</TT> and <TT>number_of_edges()</TT> is |
---|
69 | <TT>int</TT>, so we choose that type for the |
---|
70 | <TT>vertices_size_type</TT> and <tt>edges_size_type</tt> of the |
---|
71 | graph. The iterator types will be more complicated, so we leave that |
---|
72 | for later. |
---|
73 | |
---|
74 | <P> |
---|
75 | <PRE> |
---|
76 | namespace boost { |
---|
77 | template <class vtype, class etype> |
---|
78 | struct graph_traits< GRAPH<vtype,etype> > { |
---|
79 | typedef node vertex_descriptor; |
---|
80 | typedef edge edge_descriptor; |
---|
81 | |
---|
82 | // iterator typedefs... |
---|
83 | |
---|
84 | typedef directed_tag directed_category; |
---|
85 | typedef allow_parallel_edge_tag edge_parallel_category; |
---|
86 | typedef int vertices_size_type; |
---|
87 | typedef int edges_size_type; |
---|
88 | }; |
---|
89 | } // namespace boost |
---|
90 | </PRE> |
---|
91 | |
---|
92 | <P> |
---|
93 | First we will write the <TT>source()</TT> and <TT>target()</TT> |
---|
94 | functions of the <a href="./IncidenceGraph.html">IncidenceGraph</a> |
---|
95 | concept, which is part of the <a |
---|
96 | href="./VertexListGraph.html">VertexListGraph</a> concept. We use the |
---|
97 | LEDA <TT>GRAPH</TT> type for the graph parameter, and use |
---|
98 | <TT>graph_traits</TT> to specify the edge parameter and the vertex |
---|
99 | return type. We could also just use the LEDA types <TT>node</TT> and |
---|
100 | <TT>edge</TT> here, but it is better practice to always use |
---|
101 | <TT>graph_traits</TT>. If there is a need to change the associated |
---|
102 | vertex or edge type, you will only need to do it in one place, inside |
---|
103 | the specialization of <TT>graph_traits</TT> instead of throughout your |
---|
104 | code. LEDA provides <TT>source()</TT> and <TT>target()</TT> functions, |
---|
105 | so we merely call them. |
---|
106 | |
---|
107 | <P> |
---|
108 | <PRE> |
---|
109 | namespace boost { |
---|
110 | template <class vtype, class etype> |
---|
111 | typename graph_traits< GRAPH<vtype,etype> >::vertex_descriptor |
---|
112 | source( |
---|
113 | typename graph_traits< GRAPH<vtype,etype> >::edge_descriptor e, |
---|
114 | const GRAPH<vtype,etype>& g) |
---|
115 | { |
---|
116 | return source(e); |
---|
117 | } |
---|
118 | |
---|
119 | template <class vtype, class etype> |
---|
120 | typename graph_traits< GRAPH<vtype,etype> >::vertex_descriptor |
---|
121 | target( |
---|
122 | typename graph_traits< GRAPH<vtype,etype> >::edge_descriptor e, |
---|
123 | const GRAPH<vtype,etype>& g) |
---|
124 | { |
---|
125 | return target(e); |
---|
126 | } |
---|
127 | } // namespace boost |
---|
128 | </PRE> |
---|
129 | |
---|
130 | <P> |
---|
131 | The next function from <a |
---|
132 | href="./IncidenceGraph.html">IncidenceGraph</a> that we need to |
---|
133 | implement is <TT>out_edges()</TT>. This function returns a pair of |
---|
134 | out-edge iterators. Since LEDA does not use STL-style iterators we |
---|
135 | need to implement some. There is a very handy boost utility for |
---|
136 | implementing iterators, called <TT>iterator_adaptor</TT>. Writing a |
---|
137 | standard conforming iterator classes is actually quite difficult, |
---|
138 | harder than you may think. With the <TT>iterator_adaptor</TT> class, |
---|
139 | you just implement a policy class and the rest is taken care of. The |
---|
140 | following code is the policy class for our out-edge iterator. In LEDA, |
---|
141 | the edge object itself is used like an iterator. It has functions |
---|
142 | <TT>Succ_Adj_Edge()</TT> and <TT>Pred_Adj_Edge()</TT> to move to the |
---|
143 | next and previous (successor and predecessor) edge. One gotcha in |
---|
144 | using the LEDA <TT>edge</TT> as an iterator comes up in the |
---|
145 | <TT>dereference()</TT> function, which merely returns the edge |
---|
146 | object. The dereference operator for standard compliant iterators must |
---|
147 | be a const member function, which is why the edge argument is |
---|
148 | const. However, the return type should not be const, hence the need |
---|
149 | for <TT>const_cast</TT>. |
---|
150 | |
---|
151 | <P> |
---|
152 | <PRE> |
---|
153 | namespace boost { |
---|
154 | struct out_edge_iterator_policies |
---|
155 | { |
---|
156 | static void increment(edge& e) |
---|
157 | { e = Succ_Adj_Edge(e,0); } |
---|
158 | |
---|
159 | static void decrement(edge& e) |
---|
160 | { e = Pred_Adj_Edge(e,0); } |
---|
161 | |
---|
162 | template <class Reference> |
---|
163 | static Reference dereference(type<Reference>, const edge& e) |
---|
164 | { return const_cast<Reference>(e); } |
---|
165 | |
---|
166 | static bool equal(const edge& x, const edge& y) |
---|
167 | { return x == y; } |
---|
168 | }; |
---|
169 | } // namespace boost |
---|
170 | </PRE> |
---|
171 | |
---|
172 | <P> |
---|
173 | Now we go back to the <TT>graph_traits</TT> class, and use |
---|
174 | <TT>iterator_adaptor</TT> to fill in the |
---|
175 | <TT>out_edge_iterator</TT>. We use the <TT>iterator</TT> type |
---|
176 | to specify the associated types of the iterator, including iterator |
---|
177 | category and value type. |
---|
178 | |
---|
179 | <P> |
---|
180 | <PRE> |
---|
181 | namespace boost { |
---|
182 | template <class vtype, class etype> |
---|
183 | struct graph_traits< GRAPH<vtype,etype> > { |
---|
184 | // ... |
---|
185 | typedef iterator_adaptor<edge, |
---|
186 | out_edge_iterator_policies, |
---|
187 | iterator<std::bidirectional_iterator_tag,edge> |
---|
188 | > out_edge_iterator; |
---|
189 | // ... |
---|
190 | }; |
---|
191 | } // namespace boost |
---|
192 | </PRE> |
---|
193 | |
---|
194 | <P> |
---|
195 | With the <TT>out_edge_iterator</TT> defined in <TT>graph_traits</TT> we |
---|
196 | are ready to define the <TT>out_edges()</TT> function. The following |
---|
197 | definition looks complicated at first glance, but it is really quite |
---|
198 | simple. The return type should be a pair of out-edge iterators, so we |
---|
199 | use <TT>std::pair</TT> and then <TT>graph_traits</TT> to access the |
---|
200 | out-edge iterator types. In the body of the function we construct the |
---|
201 | out-edge iterators by passing in the first adjacenct edge for the |
---|
202 | begin iterator, and 0 for the end iterator (which is used in LEDA as |
---|
203 | the end sentinel). The 0 argument to <TT>First_Adj_Edge</TT> tells |
---|
204 | LEDA we want out-edges (and not in-edges). |
---|
205 | |
---|
206 | <P> |
---|
207 | <PRE> |
---|
208 | namespace boost { |
---|
209 | template <class vtype, class etype> |
---|
210 | inline std::pair< |
---|
211 | typename graph_traits< GRAPH<vtype,etype> >::out_edge_iterator, |
---|
212 | typename graph_traits< GRAPH<vtype,etype> >::out_edge_iterator > |
---|
213 | out_edges( |
---|
214 | typename graph_traits< GRAPH<vtype,etype> >::vertex_descriptor u, |
---|
215 | const GRAPH<vtype,etype>& g) |
---|
216 | { |
---|
217 | typedef typename graph_traits< GRAPH<vtype,etype> > |
---|
218 | ::out_edge_iterator Iter; |
---|
219 | return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) ); |
---|
220 | } |
---|
221 | } // namespace boost |
---|
222 | </PRE> |
---|
223 | |
---|
224 | <P> |
---|
225 | The rest of the iterator types and interface functions are constructed |
---|
226 | using the same techniques as above. The complete code for the LEDA |
---|
227 | wrapper interface is in <a |
---|
228 | href="../../../boost/graph/leda_graph.hpp"><TT>boost/graph/leda_graph.hpp</TT></a>. In |
---|
229 | the following code we use the BGL concept checks to make sure that we |
---|
230 | correctly implemented the BGL interface. These checks do not test the |
---|
231 | run-time behaviour of the implementation; that is tested in <a |
---|
232 | href="../test/graph.cpp"><TT>test/graph.cpp</TT></a>. |
---|
233 | |
---|
234 | <P> |
---|
235 | <PRE> |
---|
236 | #include <boost/graph/graph_concepts.hpp> |
---|
237 | #include <boost/graph/leda_graph.hpp> |
---|
238 | |
---|
239 | int |
---|
240 | main(int,char*[]) |
---|
241 | { |
---|
242 | typedef GRAPH<int,int> Graph; |
---|
243 | function_requires< VertexListGraphConcept<Graph> >(); |
---|
244 | function_requires< BidirectionalGraphConcept<Graph> >(); |
---|
245 | function_requires< MutableGraphConcept<Graph> >(); |
---|
246 | return 0; |
---|
247 | } |
---|
248 | </PRE> |
---|
249 | |
---|
250 | |
---|
251 | |
---|
252 | <br> |
---|
253 | <HR> |
---|
254 | <TABLE> |
---|
255 | <TR valign=top> |
---|
256 | <TD nowrap>Copyright © 2000-2001</TD><TD> |
---|
257 | <A HREF="../../../people/jeremy_siek.htm">Jeremy Siek</A>, |
---|
258 | Indiana University (<A |
---|
259 | HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)<br> |
---|
260 | <A HREF="../../../people/liequan_lee.htm">Lie-Quan Lee</A>, Indiana University (<A HREF="mailto:llee@cs.indiana.edu">llee@cs.indiana.edu</A>)<br> |
---|
261 | <A HREF=http://www.osl.iu.edu/~lums>Andrew Lumsdaine</A>, |
---|
262 | Indiana University (<A |
---|
263 | HREF="mailto:lums@osl.iu.edu">lums@osl.iu.edu</A>) |
---|
264 | </TD></TR></TABLE> |
---|
265 | |
---|
266 | </BODY> |
---|
267 | </HTML> |
---|