1 | // Copyright 2004 The Trustees of Indiana University. |
---|
2 | |
---|
3 | // Distributed under the Boost Software License, Version 1.0. |
---|
4 | // (See accompanying file LICENSE_1_0.txt or copy at |
---|
5 | // http://www.boost.org/LICENSE_1_0.txt) |
---|
6 | |
---|
7 | // Authors: Douglas Gregor |
---|
8 | // Andrew Lumsdaine |
---|
9 | #ifndef BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP |
---|
10 | #define BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP |
---|
11 | |
---|
12 | #include <boost/graph/betweenness_centrality.hpp> |
---|
13 | #include <boost/graph/graph_traits.hpp> |
---|
14 | #include <boost/pending/indirect_cmp.hpp> |
---|
15 | #include <algorithm> |
---|
16 | #include <vector> |
---|
17 | #include <boost/property_map.hpp> |
---|
18 | |
---|
19 | namespace boost { |
---|
20 | |
---|
21 | /** Threshold termination function for the betweenness centrality |
---|
22 | * clustering algorithm. |
---|
23 | */ |
---|
24 | template<typename T> |
---|
25 | struct bc_clustering_threshold |
---|
26 | { |
---|
27 | typedef T centrality_type; |
---|
28 | |
---|
29 | /// Terminate clustering when maximum absolute edge centrality is |
---|
30 | /// below the given threshold. |
---|
31 | explicit bc_clustering_threshold(T threshold) |
---|
32 | : threshold(threshold), dividend(1.0) {} |
---|
33 | |
---|
34 | /** |
---|
35 | * Terminate clustering when the maximum edge centrality is below |
---|
36 | * the given threshold. |
---|
37 | * |
---|
38 | * @param threshold the threshold value |
---|
39 | * |
---|
40 | * @param g the graph on which the threshold will be calculated |
---|
41 | * |
---|
42 | * @param normalize when true, the threshold is compared against the |
---|
43 | * normalized edge centrality based on the input graph; otherwise, |
---|
44 | * the threshold is compared against the absolute edge centrality. |
---|
45 | */ |
---|
46 | template<typename Graph> |
---|
47 | bc_clustering_threshold(T threshold, const Graph& g, bool normalize = true) |
---|
48 | : threshold(threshold), dividend(1.0) |
---|
49 | { |
---|
50 | if (normalize) { |
---|
51 | typename graph_traits<Graph>::vertices_size_type n = num_vertices(g); |
---|
52 | dividend = T((n - 1) * (n - 2)) / T(2); |
---|
53 | } |
---|
54 | } |
---|
55 | |
---|
56 | /** Returns true when the given maximum edge centrality (potentially |
---|
57 | * normalized) falls below the threshold. |
---|
58 | */ |
---|
59 | template<typename Graph, typename Edge> |
---|
60 | bool operator()(T max_centrality, Edge, const Graph&) |
---|
61 | { |
---|
62 | return (max_centrality / dividend) < threshold; |
---|
63 | } |
---|
64 | |
---|
65 | protected: |
---|
66 | T threshold; |
---|
67 | T dividend; |
---|
68 | }; |
---|
69 | |
---|
70 | /** Graph clustering based on edge betweenness centrality. |
---|
71 | * |
---|
72 | * This algorithm implements graph clustering based on edge |
---|
73 | * betweenness centrality. It is an iterative algorithm, where in each |
---|
74 | * step it compute the edge betweenness centrality (via @ref |
---|
75 | * brandes_betweenness_centrality) and removes the edge with the |
---|
76 | * maximum betweenness centrality. The @p done function object |
---|
77 | * determines when the algorithm terminates (the edge found when the |
---|
78 | * algorithm terminates will not be removed). |
---|
79 | * |
---|
80 | * @param g The graph on which clustering will be performed. The type |
---|
81 | * of this parameter (@c MutableGraph) must be a model of the |
---|
82 | * VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph |
---|
83 | * concepts. |
---|
84 | * |
---|
85 | * @param done The function object that indicates termination of the |
---|
86 | * algorithm. It must be a ternary function object thats accepts the |
---|
87 | * maximum centrality, the descriptor of the edge that will be |
---|
88 | * removed, and the graph @p g. |
---|
89 | * |
---|
90 | * @param edge_centrality (UTIL/OUT) The property map that will store |
---|
91 | * the betweenness centrality for each edge. When the algorithm |
---|
92 | * terminates, it will contain the edge centralities for the |
---|
93 | * graph. The type of this property map must model the |
---|
94 | * ReadWritePropertyMap concept. Defaults to an @c |
---|
95 | * iterator_property_map whose value type is |
---|
96 | * @c Done::centrality_type and using @c get(edge_index, g) for the |
---|
97 | * index map. |
---|
98 | * |
---|
99 | * @param vertex_index (IN) The property map that maps vertices to |
---|
100 | * indices in the range @c [0, num_vertices(g)). This type of this |
---|
101 | * property map must model the ReadablePropertyMap concept and its |
---|
102 | * value type must be an integral type. Defaults to |
---|
103 | * @c get(vertex_index, g). |
---|
104 | */ |
---|
105 | template<typename MutableGraph, typename Done, typename EdgeCentralityMap, |
---|
106 | typename VertexIndexMap> |
---|
107 | void |
---|
108 | betweenness_centrality_clustering(MutableGraph& g, Done done, |
---|
109 | EdgeCentralityMap edge_centrality, |
---|
110 | VertexIndexMap vertex_index) |
---|
111 | { |
---|
112 | typedef typename property_traits<EdgeCentralityMap>::value_type |
---|
113 | centrality_type; |
---|
114 | typedef typename graph_traits<MutableGraph>::edge_iterator edge_iterator; |
---|
115 | typedef typename graph_traits<MutableGraph>::edge_descriptor edge_descriptor; |
---|
116 | typedef typename graph_traits<MutableGraph>::vertices_size_type |
---|
117 | vertices_size_type; |
---|
118 | |
---|
119 | if (edges(g).first == edges(g).second) return; |
---|
120 | |
---|
121 | // Function object that compares the centrality of edges |
---|
122 | indirect_cmp<EdgeCentralityMap, std::less<centrality_type> > |
---|
123 | cmp(edge_centrality); |
---|
124 | |
---|
125 | bool is_done; |
---|
126 | do { |
---|
127 | brandes_betweenness_centrality(g, |
---|
128 | edge_centrality_map(edge_centrality) |
---|
129 | .vertex_index_map(vertex_index)); |
---|
130 | edge_descriptor e = *max_element(edges(g).first, edges(g).second, cmp); |
---|
131 | is_done = done(get(edge_centrality, e), e, g); |
---|
132 | if (!is_done) remove_edge(e, g); |
---|
133 | } while (!is_done && edges(g).first != edges(g).second); |
---|
134 | } |
---|
135 | |
---|
136 | /** |
---|
137 | * \overload |
---|
138 | */ |
---|
139 | template<typename MutableGraph, typename Done, typename EdgeCentralityMap> |
---|
140 | void |
---|
141 | betweenness_centrality_clustering(MutableGraph& g, Done done, |
---|
142 | EdgeCentralityMap edge_centrality) |
---|
143 | { |
---|
144 | betweenness_centrality_clustering(g, done, edge_centrality, |
---|
145 | get(vertex_index, g)); |
---|
146 | } |
---|
147 | |
---|
148 | /** |
---|
149 | * \overload |
---|
150 | */ |
---|
151 | template<typename MutableGraph, typename Done> |
---|
152 | void |
---|
153 | betweenness_centrality_clustering(MutableGraph& g, Done done) |
---|
154 | { |
---|
155 | typedef typename Done::centrality_type centrality_type; |
---|
156 | std::vector<centrality_type> edge_centrality(num_edges(g)); |
---|
157 | betweenness_centrality_clustering(g, done, |
---|
158 | make_iterator_property_map(edge_centrality.begin(), get(edge_index, g)), |
---|
159 | get(vertex_index, g)); |
---|
160 | } |
---|
161 | |
---|
162 | } // end namespace boost |
---|
163 | |
---|
164 | #endif // BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP |
---|