Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: downloads/boost_1_34_1/boost/lambda/closures.hpp @ 46

Last change on this file since 46 was 29, checked in by landauf, 17 years ago

updated boost from 1_33_1 to 1_34_1

File size: 9.6 KB
Line 
1/*=============================================================================
2    Adaptable closures
3
4    Phoenix V0.9
5    Copyright (c) 2001-2002 Joel de Guzman
6
7    Distributed under the Boost Software License, Version 1.0. (See
8    accompanying file LICENSE_1_0.txt or copy at
9    http://www.boost.org/LICENSE_1_0.txt)
10
11    URL: http://spirit.sourceforge.net/
12
13==============================================================================*/
14#ifndef PHOENIX_CLOSURES_HPP
15#define PHOENIX_CLOSURES_HPP
16
17///////////////////////////////////////////////////////////////////////////////
18#include "boost/lambda/core.hpp"
19///////////////////////////////////////////////////////////////////////////////
20namespace boost {
21namespace lambda {
22
23///////////////////////////////////////////////////////////////////////////////
24//
25//  Adaptable closures
26//
27//      The framework will not be complete without some form of closures
28//      support. Closures encapsulate a stack frame where local
29//      variables are created upon entering a function and destructed
30//      upon exiting. Closures provide an environment for local
31//      variables to reside. Closures can hold heterogeneous types.
32//
33//      Phoenix closures are true hardware stack based closures. At the
34//      very least, closures enable true reentrancy in lambda functions.
35//      A closure provides access to a function stack frame where local
36//      variables reside. Modeled after Pascal nested stack frames,
37//      closures can be nested just like nested functions where code in
38//      inner closures may access local variables from in-scope outer
39//      closures (accessing inner scopes from outer scopes is an error
40//      and will cause a run-time assertion failure).
41//
42//      There are three (3) interacting classes:
43//
44//      1) closure:
45//
46//      At the point of declaration, a closure does not yet create a
47//      stack frame nor instantiate any variables. A closure declaration
48//      declares the types and names[note] of the local variables. The
49//      closure class is meant to be subclassed. It is the
50//      responsibility of a closure subclass to supply the names for
51//      each of the local variable in the closure. Example:
52//
53//          struct my_closure : closure<int, string, double> {
54//
55//              member1 num;        // names the 1st (int) local variable
56//              member2 message;    // names the 2nd (string) local variable
57//              member3 real;       // names the 3rd (double) local variable
58//          };
59//
60//          my_closure clos;
61//
62//      Now that we have a closure 'clos', its local variables can be
63//      accessed lazily using the dot notation. Each qualified local
64//      variable can be used just like any primitive actor (see
65//      primitives.hpp). Examples:
66//
67//          clos.num = 30
68//          clos.message = arg1
69//          clos.real = clos.num * 1e6
70//
71//      The examples above are lazily evaluated. As usual, these
72//      expressions return composite actors that will be evaluated
73//      through a second function call invocation (see operators.hpp).
74//      Each of the members (clos.xxx) is an actor. As such, applying
75//      the operator() will reveal its identity:
76//
77//          clos.num() // will return the current value of clos.num
78//
79//      *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)
80//      introduced and initilally implemented the closure member names
81//      that uses the dot notation.
82//
83//      2) closure_member
84//
85//      The named local variables of closure 'clos' above are actually
86//      closure members. The closure_member class is an actor and
87//      conforms to its conceptual interface. member1..memberN are
88//      predefined typedefs that correspond to each of the listed types
89//      in the closure template parameters.
90//
91//      3) closure_frame
92//
93//      When a closure member is finally evaluated, it should refer to
94//      an actual instance of the variable in the hardware stack.
95//      Without doing so, the process is not complete and the evaluated
96//      member will result to an assertion failure. Remember that the
97//      closure is just a declaration. The local variables that a
98//      closure refers to must still be instantiated.
99//
100//      The closure_frame class does the actual instantiation of the
101//      local variables and links these variables with the closure and
102//      all its members. There can be multiple instances of
103//      closure_frames typically situated in the stack inside a
104//      function. Each closure_frame instance initiates a stack frame
105//      with a new set of closure local variables. Example:
106//
107//          void foo()
108//          {
109//              closure_frame<my_closure> frame(clos);
110//              /* do something */
111//          }
112//
113//      where 'clos' is an instance of our closure 'my_closure' above.
114//      Take note that the usage above precludes locally declared
115//      classes. If my_closure is a locally declared type, we can still
116//      use its self_type as a paramater to closure_frame:
117//
118//          closure_frame<my_closure::self_type> frame(clos);
119//
120//      Upon instantiation, the closure_frame links the local variables
121//      to the closure. The previous link to another closure_frame
122//      instance created before is saved. Upon destruction, the
123//      closure_frame unlinks itself from the closure and relinks the
124//      preceding closure_frame prior to this instance.
125//
126//      The local variables in the closure 'clos' above is default
127//      constructed in the stack inside function 'foo'. Once 'foo' is
128//      exited, all of these local variables are destructed. In some
129//      cases, default construction is not desirable and we need to
130//      initialize the local closure variables with some values. This
131//      can be done by passing in the initializers in a compatible
132//      tuple. A compatible tuple is one with the same number of
133//      elements as the destination and where each element from the
134//      destination can be constructed from each corresponding element
135//      in the source. Example:
136//
137//          tuple<int, char const*, int> init(123, "Hello", 1000);
138//          closure_frame<my_closure> frame(clos, init);
139//
140//      Here now, our closure_frame's variables are initialized with
141//      int: 123, char const*: "Hello" and int: 1000.
142//
143///////////////////////////////////////////////////////////////////////////////
144
145
146
147///////////////////////////////////////////////////////////////////////////////
148//
149//  closure_frame class
150//
151///////////////////////////////////////////////////////////////////////////////
152template <typename ClosureT>
153class closure_frame : public ClosureT::tuple_t {
154
155public:
156
157    closure_frame(ClosureT& clos)
158    : ClosureT::tuple_t(), save(clos.frame), frame(clos.frame)
159    { clos.frame = this; }
160
161    template <typename TupleT>
162    closure_frame(ClosureT& clos, TupleT const& init)
163    : ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame)
164    { clos.frame = this; }
165
166    ~closure_frame()
167    { frame = save; }
168
169private:
170
171    closure_frame(closure_frame const&);            // no copy
172    closure_frame& operator=(closure_frame const&); // no assign
173
174    closure_frame* save;
175    closure_frame*& frame;
176};
177
178///////////////////////////////////////////////////////////////////////////////
179//
180//  closure_member class
181//
182///////////////////////////////////////////////////////////////////////////////
183template <int N, typename ClosureT>
184class closure_member {
185
186public:
187
188    typedef typename ClosureT::tuple_t tuple_t;
189
190    closure_member()
191    : frame(ClosureT::closure_frame_ref()) {}
192
193    template <typename TupleT>
194    struct sig {
195
196        typedef typename detail::tuple_element_as_reference<
197            N, typename ClosureT::tuple_t
198        >::type type;
199    };
200
201    template <class Ret, class A, class B, class C>
202    //    typename detail::tuple_element_as_reference
203    //        <N, typename ClosureT::tuple_t>::type
204    Ret
205    call(A&, B&, C&) const
206    {
207        assert(frame);
208        return boost::tuples::get<N>(*frame);
209    }
210
211
212private:
213
214    typename ClosureT::closure_frame_t*& frame;
215};
216
217///////////////////////////////////////////////////////////////////////////////
218//
219//  closure class
220//
221///////////////////////////////////////////////////////////////////////////////
222template <
223    typename T0 = null_type,
224    typename T1 = null_type,
225    typename T2 = null_type,
226    typename T3 = null_type,
227    typename T4 = null_type
228>
229class closure {
230
231public:
232
233    typedef tuple<T0, T1, T2, T3, T4> tuple_t;
234    typedef closure<T0, T1, T2, T3, T4> self_t;
235    typedef closure_frame<self_t> closure_frame_t;
236
237                            closure()
238                            : frame(0)      { closure_frame_ref(&frame); }
239    closure_frame_t&        context()       { assert(frame); return frame; }
240    closure_frame_t const&  context() const { assert(frame); return frame; }
241
242    typedef lambda_functor<closure_member<0, self_t> > member1;
243    typedef lambda_functor<closure_member<1, self_t> > member2;
244    typedef lambda_functor<closure_member<2, self_t> > member3;
245    typedef lambda_functor<closure_member<3, self_t> > member4;
246    typedef lambda_functor<closure_member<4, self_t> > member5;
247
248private:
249
250    closure(closure const&);            // no copy
251    closure& operator=(closure const&); // no assign
252
253    template <int N, typename ClosureT>
254    friend struct closure_member;
255
256    template <typename ClosureT>
257    friend class closure_frame;
258
259    static closure_frame_t*&
260    closure_frame_ref(closure_frame_t** frame_ = 0)
261    {
262        static closure_frame_t** frame = 0;
263        if (frame_ != 0)
264            frame = frame_;
265        return *frame;
266    }
267
268    closure_frame_t* frame;
269};
270
271}}
272   //  namespace
273
274#endif
Note: See TracBrowser for help on using the repository browser.