1 | /*============================================================================= |
---|
2 | Adaptable closures |
---|
3 | |
---|
4 | Phoenix V0.9 |
---|
5 | Copyright (c) 2001-2002 Joel de Guzman |
---|
6 | |
---|
7 | Distributed under the Boost Software License, Version 1.0. (See |
---|
8 | accompanying file LICENSE_1_0.txt or copy at |
---|
9 | http://www.boost.org/LICENSE_1_0.txt) |
---|
10 | |
---|
11 | URL: http://spirit.sourceforge.net/ |
---|
12 | |
---|
13 | ==============================================================================*/ |
---|
14 | #ifndef PHOENIX_CLOSURES_HPP |
---|
15 | #define PHOENIX_CLOSURES_HPP |
---|
16 | |
---|
17 | /////////////////////////////////////////////////////////////////////////////// |
---|
18 | #include "boost/lambda/core.hpp" |
---|
19 | /////////////////////////////////////////////////////////////////////////////// |
---|
20 | namespace boost { |
---|
21 | namespace lambda { |
---|
22 | |
---|
23 | /////////////////////////////////////////////////////////////////////////////// |
---|
24 | // |
---|
25 | // Adaptable closures |
---|
26 | // |
---|
27 | // The framework will not be complete without some form of closures |
---|
28 | // support. Closures encapsulate a stack frame where local |
---|
29 | // variables are created upon entering a function and destructed |
---|
30 | // upon exiting. Closures provide an environment for local |
---|
31 | // variables to reside. Closures can hold heterogeneous types. |
---|
32 | // |
---|
33 | // Phoenix closures are true hardware stack based closures. At the |
---|
34 | // very least, closures enable true reentrancy in lambda functions. |
---|
35 | // A closure provides access to a function stack frame where local |
---|
36 | // variables reside. Modeled after Pascal nested stack frames, |
---|
37 | // closures can be nested just like nested functions where code in |
---|
38 | // inner closures may access local variables from in-scope outer |
---|
39 | // closures (accessing inner scopes from outer scopes is an error |
---|
40 | // and will cause a run-time assertion failure). |
---|
41 | // |
---|
42 | // There are three (3) interacting classes: |
---|
43 | // |
---|
44 | // 1) closure: |
---|
45 | // |
---|
46 | // At the point of declaration, a closure does not yet create a |
---|
47 | // stack frame nor instantiate any variables. A closure declaration |
---|
48 | // declares the types and names[note] of the local variables. The |
---|
49 | // closure class is meant to be subclassed. It is the |
---|
50 | // responsibility of a closure subclass to supply the names for |
---|
51 | // each of the local variable in the closure. Example: |
---|
52 | // |
---|
53 | // struct my_closure : closure<int, string, double> { |
---|
54 | // |
---|
55 | // member1 num; // names the 1st (int) local variable |
---|
56 | // member2 message; // names the 2nd (string) local variable |
---|
57 | // member3 real; // names the 3rd (double) local variable |
---|
58 | // }; |
---|
59 | // |
---|
60 | // my_closure clos; |
---|
61 | // |
---|
62 | // Now that we have a closure 'clos', its local variables can be |
---|
63 | // accessed lazily using the dot notation. Each qualified local |
---|
64 | // variable can be used just like any primitive actor (see |
---|
65 | // primitives.hpp). Examples: |
---|
66 | // |
---|
67 | // clos.num = 30 |
---|
68 | // clos.message = arg1 |
---|
69 | // clos.real = clos.num * 1e6 |
---|
70 | // |
---|
71 | // The examples above are lazily evaluated. As usual, these |
---|
72 | // expressions return composite actors that will be evaluated |
---|
73 | // through a second function call invocation (see operators.hpp). |
---|
74 | // Each of the members (clos.xxx) is an actor. As such, applying |
---|
75 | // the operator() will reveal its identity: |
---|
76 | // |
---|
77 | // clos.num() // will return the current value of clos.num |
---|
78 | // |
---|
79 | // *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB) |
---|
80 | // introduced and initilally implemented the closure member names |
---|
81 | // that uses the dot notation. |
---|
82 | // |
---|
83 | // 2) closure_member |
---|
84 | // |
---|
85 | // The named local variables of closure 'clos' above are actually |
---|
86 | // closure members. The closure_member class is an actor and |
---|
87 | // conforms to its conceptual interface. member1..memberN are |
---|
88 | // predefined typedefs that correspond to each of the listed types |
---|
89 | // in the closure template parameters. |
---|
90 | // |
---|
91 | // 3) closure_frame |
---|
92 | // |
---|
93 | // When a closure member is finally evaluated, it should refer to |
---|
94 | // an actual instance of the variable in the hardware stack. |
---|
95 | // Without doing so, the process is not complete and the evaluated |
---|
96 | // member will result to an assertion failure. Remember that the |
---|
97 | // closure is just a declaration. The local variables that a |
---|
98 | // closure refers to must still be instantiated. |
---|
99 | // |
---|
100 | // The closure_frame class does the actual instantiation of the |
---|
101 | // local variables and links these variables with the closure and |
---|
102 | // all its members. There can be multiple instances of |
---|
103 | // closure_frames typically situated in the stack inside a |
---|
104 | // function. Each closure_frame instance initiates a stack frame |
---|
105 | // with a new set of closure local variables. Example: |
---|
106 | // |
---|
107 | // void foo() |
---|
108 | // { |
---|
109 | // closure_frame<my_closure> frame(clos); |
---|
110 | // /* do something */ |
---|
111 | // } |
---|
112 | // |
---|
113 | // where 'clos' is an instance of our closure 'my_closure' above. |
---|
114 | // Take note that the usage above precludes locally declared |
---|
115 | // classes. If my_closure is a locally declared type, we can still |
---|
116 | // use its self_type as a paramater to closure_frame: |
---|
117 | // |
---|
118 | // closure_frame<my_closure::self_type> frame(clos); |
---|
119 | // |
---|
120 | // Upon instantiation, the closure_frame links the local variables |
---|
121 | // to the closure. The previous link to another closure_frame |
---|
122 | // instance created before is saved. Upon destruction, the |
---|
123 | // closure_frame unlinks itself from the closure and relinks the |
---|
124 | // preceding closure_frame prior to this instance. |
---|
125 | // |
---|
126 | // The local variables in the closure 'clos' above is default |
---|
127 | // constructed in the stack inside function 'foo'. Once 'foo' is |
---|
128 | // exited, all of these local variables are destructed. In some |
---|
129 | // cases, default construction is not desirable and we need to |
---|
130 | // initialize the local closure variables with some values. This |
---|
131 | // can be done by passing in the initializers in a compatible |
---|
132 | // tuple. A compatible tuple is one with the same number of |
---|
133 | // elements as the destination and where each element from the |
---|
134 | // destination can be constructed from each corresponding element |
---|
135 | // in the source. Example: |
---|
136 | // |
---|
137 | // tuple<int, char const*, int> init(123, "Hello", 1000); |
---|
138 | // closure_frame<my_closure> frame(clos, init); |
---|
139 | // |
---|
140 | // Here now, our closure_frame's variables are initialized with |
---|
141 | // int: 123, char const*: "Hello" and int: 1000. |
---|
142 | // |
---|
143 | /////////////////////////////////////////////////////////////////////////////// |
---|
144 | |
---|
145 | |
---|
146 | |
---|
147 | /////////////////////////////////////////////////////////////////////////////// |
---|
148 | // |
---|
149 | // closure_frame class |
---|
150 | // |
---|
151 | /////////////////////////////////////////////////////////////////////////////// |
---|
152 | template <typename ClosureT> |
---|
153 | class closure_frame : public ClosureT::tuple_t { |
---|
154 | |
---|
155 | public: |
---|
156 | |
---|
157 | closure_frame(ClosureT& clos) |
---|
158 | : ClosureT::tuple_t(), save(clos.frame), frame(clos.frame) |
---|
159 | { clos.frame = this; } |
---|
160 | |
---|
161 | template <typename TupleT> |
---|
162 | closure_frame(ClosureT& clos, TupleT const& init) |
---|
163 | : ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame) |
---|
164 | { clos.frame = this; } |
---|
165 | |
---|
166 | ~closure_frame() |
---|
167 | { frame = save; } |
---|
168 | |
---|
169 | private: |
---|
170 | |
---|
171 | closure_frame(closure_frame const&); // no copy |
---|
172 | closure_frame& operator=(closure_frame const&); // no assign |
---|
173 | |
---|
174 | closure_frame* save; |
---|
175 | closure_frame*& frame; |
---|
176 | }; |
---|
177 | |
---|
178 | /////////////////////////////////////////////////////////////////////////////// |
---|
179 | // |
---|
180 | // closure_member class |
---|
181 | // |
---|
182 | /////////////////////////////////////////////////////////////////////////////// |
---|
183 | template <int N, typename ClosureT> |
---|
184 | class closure_member { |
---|
185 | |
---|
186 | public: |
---|
187 | |
---|
188 | typedef typename ClosureT::tuple_t tuple_t; |
---|
189 | |
---|
190 | closure_member() |
---|
191 | : frame(ClosureT::closure_frame_ref()) {} |
---|
192 | |
---|
193 | template <typename TupleT> |
---|
194 | struct sig { |
---|
195 | |
---|
196 | typedef typename detail::tuple_element_as_reference< |
---|
197 | N, typename ClosureT::tuple_t |
---|
198 | >::type type; |
---|
199 | }; |
---|
200 | |
---|
201 | template <class Ret, class A, class B, class C> |
---|
202 | // typename detail::tuple_element_as_reference |
---|
203 | // <N, typename ClosureT::tuple_t>::type |
---|
204 | Ret |
---|
205 | call(A&, B&, C&) const |
---|
206 | { |
---|
207 | assert(frame); |
---|
208 | return boost::tuples::get<N>(*frame); |
---|
209 | } |
---|
210 | |
---|
211 | |
---|
212 | private: |
---|
213 | |
---|
214 | typename ClosureT::closure_frame_t*& frame; |
---|
215 | }; |
---|
216 | |
---|
217 | /////////////////////////////////////////////////////////////////////////////// |
---|
218 | // |
---|
219 | // closure class |
---|
220 | // |
---|
221 | /////////////////////////////////////////////////////////////////////////////// |
---|
222 | template < |
---|
223 | typename T0 = null_type, |
---|
224 | typename T1 = null_type, |
---|
225 | typename T2 = null_type, |
---|
226 | typename T3 = null_type, |
---|
227 | typename T4 = null_type |
---|
228 | > |
---|
229 | class closure { |
---|
230 | |
---|
231 | public: |
---|
232 | |
---|
233 | typedef tuple<T0, T1, T2, T3, T4> tuple_t; |
---|
234 | typedef closure<T0, T1, T2, T3, T4> self_t; |
---|
235 | typedef closure_frame<self_t> closure_frame_t; |
---|
236 | |
---|
237 | closure() |
---|
238 | : frame(0) { closure_frame_ref(&frame); } |
---|
239 | closure_frame_t& context() { assert(frame); return frame; } |
---|
240 | closure_frame_t const& context() const { assert(frame); return frame; } |
---|
241 | |
---|
242 | typedef lambda_functor<closure_member<0, self_t> > member1; |
---|
243 | typedef lambda_functor<closure_member<1, self_t> > member2; |
---|
244 | typedef lambda_functor<closure_member<2, self_t> > member3; |
---|
245 | typedef lambda_functor<closure_member<3, self_t> > member4; |
---|
246 | typedef lambda_functor<closure_member<4, self_t> > member5; |
---|
247 | |
---|
248 | private: |
---|
249 | |
---|
250 | closure(closure const&); // no copy |
---|
251 | closure& operator=(closure const&); // no assign |
---|
252 | |
---|
253 | template <int N, typename ClosureT> |
---|
254 | friend struct closure_member; |
---|
255 | |
---|
256 | template <typename ClosureT> |
---|
257 | friend class closure_frame; |
---|
258 | |
---|
259 | static closure_frame_t*& |
---|
260 | closure_frame_ref(closure_frame_t** frame_ = 0) |
---|
261 | { |
---|
262 | static closure_frame_t** frame = 0; |
---|
263 | if (frame_ != 0) |
---|
264 | frame = frame_; |
---|
265 | return *frame; |
---|
266 | } |
---|
267 | |
---|
268 | closure_frame_t* frame; |
---|
269 | }; |
---|
270 | |
---|
271 | }} |
---|
272 | // namespace |
---|
273 | |
---|
274 | #endif |
---|