1 | // boost asinh.hpp header file |
---|
2 | |
---|
3 | // (C) Copyright Eric Ford 2001 & Hubert Holin. |
---|
4 | // Distributed under the Boost Software License, Version 1.0. (See |
---|
5 | // accompanying file LICENSE_1_0.txt or copy at |
---|
6 | // http://www.boost.org/LICENSE_1_0.txt) |
---|
7 | |
---|
8 | // See http://www.boost.org for updates, documentation, and revision history. |
---|
9 | |
---|
10 | #ifndef BOOST_ACOSH_HPP |
---|
11 | #define BOOST_ACOSH_HPP |
---|
12 | |
---|
13 | |
---|
14 | #include <cmath> |
---|
15 | #include <limits> |
---|
16 | #include <string> |
---|
17 | #include <stdexcept> |
---|
18 | |
---|
19 | |
---|
20 | #include <boost/config.hpp> |
---|
21 | |
---|
22 | |
---|
23 | // This is the inverse of the hyperbolic cosine function. |
---|
24 | |
---|
25 | namespace boost |
---|
26 | { |
---|
27 | namespace math |
---|
28 | { |
---|
29 | #if defined(__GNUC__) && (__GNUC__ < 3) |
---|
30 | // gcc 2.x ignores function scope using declarations, |
---|
31 | // put them in the scope of the enclosing namespace instead: |
---|
32 | |
---|
33 | using ::std::abs; |
---|
34 | using ::std::sqrt; |
---|
35 | using ::std::log; |
---|
36 | |
---|
37 | using ::std::numeric_limits; |
---|
38 | #endif |
---|
39 | |
---|
40 | #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) |
---|
41 | // This is the main fare |
---|
42 | |
---|
43 | template<typename T> |
---|
44 | inline T acosh(const T x) |
---|
45 | { |
---|
46 | using ::std::abs; |
---|
47 | using ::std::sqrt; |
---|
48 | using ::std::log; |
---|
49 | |
---|
50 | using ::std::numeric_limits; |
---|
51 | |
---|
52 | |
---|
53 | T const one = static_cast<T>(1); |
---|
54 | T const two = static_cast<T>(2); |
---|
55 | |
---|
56 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon()); |
---|
57 | static T const taylor_n_bound = sqrt(taylor_2_bound); |
---|
58 | static T const upper_taylor_2_bound = one/taylor_2_bound; |
---|
59 | |
---|
60 | if (x < one) |
---|
61 | { |
---|
62 | if (numeric_limits<T>::has_quiet_NaN) |
---|
63 | { |
---|
64 | return(numeric_limits<T>::quiet_NaN()); |
---|
65 | } |
---|
66 | else |
---|
67 | { |
---|
68 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); |
---|
69 | ::std::domain_error bad_argument(error_reporting); |
---|
70 | |
---|
71 | throw(bad_argument); |
---|
72 | } |
---|
73 | } |
---|
74 | else if (x >= taylor_n_bound) |
---|
75 | { |
---|
76 | if (x > upper_taylor_2_bound) |
---|
77 | { |
---|
78 | // approximation by laurent series in 1/x at 0+ order from -1 to 0 |
---|
79 | return( log( x*two) ); |
---|
80 | } |
---|
81 | else |
---|
82 | { |
---|
83 | return( log( x + sqrt(x*x-one) ) ); |
---|
84 | } |
---|
85 | } |
---|
86 | else |
---|
87 | { |
---|
88 | T y = sqrt(x-one); |
---|
89 | |
---|
90 | // approximation by taylor series in y at 0 up to order 2 |
---|
91 | T result = y; |
---|
92 | |
---|
93 | if (y >= taylor_2_bound) |
---|
94 | { |
---|
95 | T y3 = y*y*y; |
---|
96 | |
---|
97 | // approximation by taylor series in y at 0 up to order 4 |
---|
98 | result -= y3/static_cast<T>(12); |
---|
99 | } |
---|
100 | |
---|
101 | return(sqrt(static_cast<T>(2))*result); |
---|
102 | } |
---|
103 | } |
---|
104 | #else |
---|
105 | // These are implementation details (for main fare see below) |
---|
106 | |
---|
107 | namespace detail |
---|
108 | { |
---|
109 | template < |
---|
110 | typename T, |
---|
111 | bool QuietNanSupported |
---|
112 | > |
---|
113 | struct acosh_helper2_t |
---|
114 | { |
---|
115 | static T get_NaN() |
---|
116 | { |
---|
117 | return(::std::numeric_limits<T>::quiet_NaN()); |
---|
118 | } |
---|
119 | }; // boost::detail::acosh_helper2_t |
---|
120 | |
---|
121 | |
---|
122 | template<typename T> |
---|
123 | struct acosh_helper2_t<T, false> |
---|
124 | { |
---|
125 | static T get_NaN() |
---|
126 | { |
---|
127 | ::std::string error_reporting("Argument to acosh is greater than or equal to +1!"); |
---|
128 | ::std::domain_error bad_argument(error_reporting); |
---|
129 | |
---|
130 | throw(bad_argument); |
---|
131 | } |
---|
132 | }; // boost::detail::acosh_helper2_t |
---|
133 | |
---|
134 | } // boost::detail |
---|
135 | |
---|
136 | |
---|
137 | // This is the main fare |
---|
138 | |
---|
139 | template<typename T> |
---|
140 | inline T acosh(const T x) |
---|
141 | { |
---|
142 | using ::std::abs; |
---|
143 | using ::std::sqrt; |
---|
144 | using ::std::log; |
---|
145 | |
---|
146 | using ::std::numeric_limits; |
---|
147 | |
---|
148 | typedef detail::acosh_helper2_t<T, std::numeric_limits<T>::has_quiet_NaN> helper2_type; |
---|
149 | |
---|
150 | |
---|
151 | T const one = static_cast<T>(1); |
---|
152 | T const two = static_cast<T>(2); |
---|
153 | |
---|
154 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon()); |
---|
155 | static T const taylor_n_bound = sqrt(taylor_2_bound); |
---|
156 | static T const upper_taylor_2_bound = one/taylor_2_bound; |
---|
157 | |
---|
158 | if (x < one) |
---|
159 | { |
---|
160 | return(helper2_type::get_NaN()); |
---|
161 | } |
---|
162 | else if (x >= taylor_n_bound) |
---|
163 | { |
---|
164 | if (x > upper_taylor_2_bound) |
---|
165 | { |
---|
166 | // approximation by laurent series in 1/x at 0+ order from -1 to 0 |
---|
167 | return( log( x*two) ); |
---|
168 | } |
---|
169 | else |
---|
170 | { |
---|
171 | return( log( x + sqrt(x*x-one) ) ); |
---|
172 | } |
---|
173 | } |
---|
174 | else |
---|
175 | { |
---|
176 | T y = sqrt(x-one); |
---|
177 | |
---|
178 | // approximation by taylor series in y at 0 up to order 2 |
---|
179 | T result = y; |
---|
180 | |
---|
181 | if (y >= taylor_2_bound) |
---|
182 | { |
---|
183 | T y3 = y*y*y; |
---|
184 | |
---|
185 | // approximation by taylor series in y at 0 up to order 4 |
---|
186 | result -= y3/static_cast<T>(12); |
---|
187 | } |
---|
188 | |
---|
189 | return(sqrt(static_cast<T>(2))*result); |
---|
190 | } |
---|
191 | } |
---|
192 | #endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */ |
---|
193 | } |
---|
194 | } |
---|
195 | |
---|
196 | #endif /* BOOST_ACOSH_HPP */ |
---|
197 | |
---|
198 | |
---|