1 | // boost asinh.hpp header file |
---|
2 | |
---|
3 | // (C) Copyright Eric Ford & Hubert Holin 2001. |
---|
4 | // Distributed under the Boost Software License, Version 1.0. (See |
---|
5 | // accompanying file LICENSE_1_0.txt or copy at |
---|
6 | // http://www.boost.org/LICENSE_1_0.txt) |
---|
7 | |
---|
8 | // See http://www.boost.org for updates, documentation, and revision history. |
---|
9 | |
---|
10 | #ifndef BOOST_ASINH_HPP |
---|
11 | #define BOOST_ASINH_HPP |
---|
12 | |
---|
13 | |
---|
14 | #include <cmath> |
---|
15 | #include <limits> |
---|
16 | #include <string> |
---|
17 | #include <stdexcept> |
---|
18 | |
---|
19 | |
---|
20 | #include <boost/config.hpp> |
---|
21 | |
---|
22 | |
---|
23 | // This is the inverse of the hyperbolic sine function. |
---|
24 | |
---|
25 | namespace boost |
---|
26 | { |
---|
27 | namespace math |
---|
28 | { |
---|
29 | #if defined(__GNUC__) && (__GNUC__ < 3) |
---|
30 | // gcc 2.x ignores function scope using declarations, |
---|
31 | // put them in the scope of the enclosing namespace instead: |
---|
32 | |
---|
33 | using ::std::abs; |
---|
34 | using ::std::sqrt; |
---|
35 | using ::std::log; |
---|
36 | |
---|
37 | using ::std::numeric_limits; |
---|
38 | #endif |
---|
39 | |
---|
40 | template<typename T> |
---|
41 | inline T asinh(const T x) |
---|
42 | { |
---|
43 | using ::std::abs; |
---|
44 | using ::std::sqrt; |
---|
45 | using ::std::log; |
---|
46 | |
---|
47 | using ::std::numeric_limits; |
---|
48 | |
---|
49 | |
---|
50 | T const one = static_cast<T>(1); |
---|
51 | T const two = static_cast<T>(2); |
---|
52 | |
---|
53 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon()); |
---|
54 | static T const taylor_n_bound = sqrt(taylor_2_bound); |
---|
55 | static T const upper_taylor_2_bound = one/taylor_2_bound; |
---|
56 | static T const upper_taylor_n_bound = one/taylor_n_bound; |
---|
57 | |
---|
58 | if (x >= +taylor_n_bound) |
---|
59 | { |
---|
60 | if (x > upper_taylor_n_bound) |
---|
61 | { |
---|
62 | if (x > upper_taylor_2_bound) |
---|
63 | { |
---|
64 | // approximation by laurent series in 1/x at 0+ order from -1 to 0 |
---|
65 | return( log( x * two) ); |
---|
66 | } |
---|
67 | else |
---|
68 | { |
---|
69 | // approximation by laurent series in 1/x at 0+ order from -1 to 1 |
---|
70 | return( log( x*two + (one/(x*two)) ) ); |
---|
71 | } |
---|
72 | } |
---|
73 | else |
---|
74 | { |
---|
75 | return( log( x + sqrt(x*x+one) ) ); |
---|
76 | } |
---|
77 | } |
---|
78 | else if (x <= -taylor_n_bound) |
---|
79 | { |
---|
80 | return(-asinh(-x)); |
---|
81 | } |
---|
82 | else |
---|
83 | { |
---|
84 | // approximation by taylor series in x at 0 up to order 2 |
---|
85 | T result = x; |
---|
86 | |
---|
87 | if (abs(x) >= taylor_2_bound) |
---|
88 | { |
---|
89 | T x3 = x*x*x; |
---|
90 | |
---|
91 | // approximation by taylor series in x at 0 up to order 4 |
---|
92 | result -= x3/static_cast<T>(6); |
---|
93 | } |
---|
94 | |
---|
95 | return(result); |
---|
96 | } |
---|
97 | } |
---|
98 | } |
---|
99 | } |
---|
100 | |
---|
101 | #endif /* BOOST_ASINH_HPP */ |
---|