1 | // boost atanh.hpp header file |
---|
2 | |
---|
3 | // (C) Copyright Hubert Holin 2001. |
---|
4 | // Distributed under the Boost Software License, Version 1.0. (See |
---|
5 | // accompanying file LICENSE_1_0.txt or copy at |
---|
6 | // http://www.boost.org/LICENSE_1_0.txt) |
---|
7 | |
---|
8 | // See http://www.boost.org for updates, documentation, and revision history. |
---|
9 | |
---|
10 | #ifndef BOOST_ATANH_HPP |
---|
11 | #define BOOST_ATANH_HPP |
---|
12 | |
---|
13 | |
---|
14 | #include <cmath> |
---|
15 | #include <limits> |
---|
16 | #include <string> |
---|
17 | #include <stdexcept> |
---|
18 | |
---|
19 | |
---|
20 | #include <boost/config.hpp> |
---|
21 | |
---|
22 | |
---|
23 | // This is the inverse of the hyperbolic tangent function. |
---|
24 | |
---|
25 | namespace boost |
---|
26 | { |
---|
27 | namespace math |
---|
28 | { |
---|
29 | #if defined(__GNUC__) && (__GNUC__ < 3) |
---|
30 | // gcc 2.x ignores function scope using declarations, |
---|
31 | // put them in the scope of the enclosing namespace instead: |
---|
32 | |
---|
33 | using ::std::abs; |
---|
34 | using ::std::sqrt; |
---|
35 | using ::std::log; |
---|
36 | |
---|
37 | using ::std::numeric_limits; |
---|
38 | #endif |
---|
39 | |
---|
40 | #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) |
---|
41 | // This is the main fare |
---|
42 | |
---|
43 | template<typename T> |
---|
44 | inline T atanh(const T x) |
---|
45 | { |
---|
46 | using ::std::abs; |
---|
47 | using ::std::sqrt; |
---|
48 | using ::std::log; |
---|
49 | |
---|
50 | using ::std::numeric_limits; |
---|
51 | |
---|
52 | T const one = static_cast<T>(1); |
---|
53 | T const two = static_cast<T>(2); |
---|
54 | |
---|
55 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon()); |
---|
56 | static T const taylor_n_bound = sqrt(taylor_2_bound); |
---|
57 | |
---|
58 | if (x < -one) |
---|
59 | { |
---|
60 | if (numeric_limits<T>::has_quiet_NaN) |
---|
61 | { |
---|
62 | return(numeric_limits<T>::quiet_NaN()); |
---|
63 | } |
---|
64 | else |
---|
65 | { |
---|
66 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); |
---|
67 | ::std::domain_error bad_argument(error_reporting); |
---|
68 | |
---|
69 | throw(bad_argument); |
---|
70 | } |
---|
71 | } |
---|
72 | else if (x < -one+numeric_limits<T>::epsilon()) |
---|
73 | { |
---|
74 | if (numeric_limits<T>::has_infinity) |
---|
75 | { |
---|
76 | return(-numeric_limits<T>::infinity()); |
---|
77 | } |
---|
78 | else |
---|
79 | { |
---|
80 | ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!"); |
---|
81 | ::std::out_of_range bad_argument(error_reporting); |
---|
82 | |
---|
83 | throw(bad_argument); |
---|
84 | } |
---|
85 | } |
---|
86 | else if (x > +one-numeric_limits<T>::epsilon()) |
---|
87 | { |
---|
88 | if (numeric_limits<T>::has_infinity) |
---|
89 | { |
---|
90 | return(+numeric_limits<T>::infinity()); |
---|
91 | } |
---|
92 | else |
---|
93 | { |
---|
94 | ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!"); |
---|
95 | ::std::out_of_range bad_argument(error_reporting); |
---|
96 | |
---|
97 | throw(bad_argument); |
---|
98 | } |
---|
99 | } |
---|
100 | else if (x > +one) |
---|
101 | { |
---|
102 | if (numeric_limits<T>::has_quiet_NaN) |
---|
103 | { |
---|
104 | return(numeric_limits<T>::quiet_NaN()); |
---|
105 | } |
---|
106 | else |
---|
107 | { |
---|
108 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); |
---|
109 | ::std::domain_error bad_argument(error_reporting); |
---|
110 | |
---|
111 | throw(bad_argument); |
---|
112 | } |
---|
113 | } |
---|
114 | else if (abs(x) >= taylor_n_bound) |
---|
115 | { |
---|
116 | return(log( (one + x) / (one - x) ) / two); |
---|
117 | } |
---|
118 | else |
---|
119 | { |
---|
120 | // approximation by taylor series in x at 0 up to order 2 |
---|
121 | T result = x; |
---|
122 | |
---|
123 | if (abs(x) >= taylor_2_bound) |
---|
124 | { |
---|
125 | T x3 = x*x*x; |
---|
126 | |
---|
127 | // approximation by taylor series in x at 0 up to order 4 |
---|
128 | result += x3/static_cast<T>(3); |
---|
129 | } |
---|
130 | |
---|
131 | return(result); |
---|
132 | } |
---|
133 | } |
---|
134 | #else |
---|
135 | // These are implementation details (for main fare see below) |
---|
136 | |
---|
137 | namespace detail |
---|
138 | { |
---|
139 | template < |
---|
140 | typename T, |
---|
141 | bool InfinitySupported |
---|
142 | > |
---|
143 | struct atanh_helper1_t |
---|
144 | { |
---|
145 | static T get_pos_infinity() |
---|
146 | { |
---|
147 | return(+::std::numeric_limits<T>::infinity()); |
---|
148 | } |
---|
149 | |
---|
150 | static T get_neg_infinity() |
---|
151 | { |
---|
152 | return(-::std::numeric_limits<T>::infinity()); |
---|
153 | } |
---|
154 | }; // boost::math::detail::atanh_helper1_t |
---|
155 | |
---|
156 | |
---|
157 | template<typename T> |
---|
158 | struct atanh_helper1_t<T, false> |
---|
159 | { |
---|
160 | static T get_pos_infinity() |
---|
161 | { |
---|
162 | ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!"); |
---|
163 | ::std::out_of_range bad_argument(error_reporting); |
---|
164 | |
---|
165 | throw(bad_argument); |
---|
166 | } |
---|
167 | |
---|
168 | static T get_neg_infinity() |
---|
169 | { |
---|
170 | ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!"); |
---|
171 | ::std::out_of_range bad_argument(error_reporting); |
---|
172 | |
---|
173 | throw(bad_argument); |
---|
174 | } |
---|
175 | }; // boost::math::detail::atanh_helper1_t |
---|
176 | |
---|
177 | |
---|
178 | template < |
---|
179 | typename T, |
---|
180 | bool QuietNanSupported |
---|
181 | > |
---|
182 | struct atanh_helper2_t |
---|
183 | { |
---|
184 | static T get_NaN() |
---|
185 | { |
---|
186 | return(::std::numeric_limits<T>::quiet_NaN()); |
---|
187 | } |
---|
188 | }; // boost::detail::atanh_helper2_t |
---|
189 | |
---|
190 | |
---|
191 | template<typename T> |
---|
192 | struct atanh_helper2_t<T, false> |
---|
193 | { |
---|
194 | static T get_NaN() |
---|
195 | { |
---|
196 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); |
---|
197 | ::std::domain_error bad_argument(error_reporting); |
---|
198 | |
---|
199 | throw(bad_argument); |
---|
200 | } |
---|
201 | }; // boost::detail::atanh_helper2_t |
---|
202 | } // boost::detail |
---|
203 | |
---|
204 | |
---|
205 | // This is the main fare |
---|
206 | |
---|
207 | template<typename T> |
---|
208 | inline T atanh(const T x) |
---|
209 | { |
---|
210 | using ::std::abs; |
---|
211 | using ::std::sqrt; |
---|
212 | using ::std::log; |
---|
213 | |
---|
214 | using ::std::numeric_limits; |
---|
215 | |
---|
216 | typedef detail::atanh_helper1_t<T, ::std::numeric_limits<T>::has_infinity> helper1_type; |
---|
217 | typedef detail::atanh_helper2_t<T, ::std::numeric_limits<T>::has_quiet_NaN> helper2_type; |
---|
218 | |
---|
219 | |
---|
220 | T const one = static_cast<T>(1); |
---|
221 | T const two = static_cast<T>(2); |
---|
222 | |
---|
223 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon()); |
---|
224 | static T const taylor_n_bound = sqrt(taylor_2_bound); |
---|
225 | |
---|
226 | if (x < -one) |
---|
227 | { |
---|
228 | return(helper2_type::get_NaN()); |
---|
229 | } |
---|
230 | else if (x < -one+numeric_limits<T>::epsilon()) |
---|
231 | { |
---|
232 | return(helper1_type::get_neg_infinity()); |
---|
233 | } |
---|
234 | else if (x > +one-numeric_limits<T>::epsilon()) |
---|
235 | { |
---|
236 | return(helper1_type::get_pos_infinity()); |
---|
237 | } |
---|
238 | else if (x > +one) |
---|
239 | { |
---|
240 | return(helper2_type::get_NaN()); |
---|
241 | } |
---|
242 | else if (abs(x) >= taylor_n_bound) |
---|
243 | { |
---|
244 | return(log( (one + x) / (one - x) ) / two); |
---|
245 | } |
---|
246 | else |
---|
247 | { |
---|
248 | // approximation by taylor series in x at 0 up to order 2 |
---|
249 | T result = x; |
---|
250 | |
---|
251 | if (abs(x) >= taylor_2_bound) |
---|
252 | { |
---|
253 | T x3 = x*x*x; |
---|
254 | |
---|
255 | // approximation by taylor series in x at 0 up to order 4 |
---|
256 | result += x3/static_cast<T>(3); |
---|
257 | } |
---|
258 | |
---|
259 | return(result); |
---|
260 | } |
---|
261 | } |
---|
262 | #endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */ |
---|
263 | } |
---|
264 | } |
---|
265 | |
---|
266 | #endif /* BOOST_ATANH_HPP */ |
---|
267 | |
---|