Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: downloads/boost_1_34_1/boost/math/special_functions/log1p.hpp @ 46

Last change on this file since 46 was 29, checked in by landauf, 17 years ago

updated boost from 1_33_1 to 1_34_1

File size: 2.9 KB
Line 
1//  (C) Copyright John Maddock 2005.
2//  Use, modification and distribution are subject to the
3//  Boost Software License, Version 1.0. (See accompanying file
4//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6#ifndef BOOST_MATH_LOG1P_INCLUDED
7#define BOOST_MATH_LOG1P_INCLUDED
8
9#include <cmath>
10#include <math.h> // platform's ::log1p
11#include <boost/limits.hpp>
12#include <boost/math/special_functions/detail/series.hpp>
13
14#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
15#  include <boost/static_assert.hpp>
16#else
17#  include <boost/assert.hpp>
18#endif
19
20#ifdef BOOST_NO_STDC_NAMESPACE
21namespace std{ using ::fabs; using ::log; }
22#endif
23
24
25namespace boost{ namespace math{
26
27namespace detail{
28
29//
30// Functor log1p_series returns the next term in the Taylor series
31// pow(-1, k-1)*pow(x, k) / k
32// each time that operator() is invoked.
33//
34template <class T>
35struct log1p_series
36{
37   typedef T result_type;
38
39   log1p_series(T x)
40      : k(0), m_mult(-x), m_prod(-1){}
41
42   T operator()()
43   {
44      m_prod *= m_mult;
45      return m_prod / ++k; 
46   }
47
48   int count()const
49   {
50      return k;
51   }
52
53private:
54   int k;
55   const T m_mult;
56   T m_prod;
57   log1p_series(const log1p_series&);
58   log1p_series& operator=(const log1p_series&);
59};
60
61} // namespace
62
63//
64// Algorithm log1p is part of C99, but is not yet provided by many compilers.
65//
66// This version uses a Taylor series expansion for 0.5 > x > epsilon, which may
67// require up to std::numeric_limits<T>::digits+1 terms to be calculated.  It would
68// be much more efficient to use the equivalence:
69// log(1+x) == (log(1+x) * x) / ((1-x) - 1)
70// Unfortunately optimizing compilers make such a mess of this, that it performs
71// no better than log(1+x): which is to say not very well at all.
72//
73template <class T>
74T log1p(T x)
75{
76#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
77   BOOST_STATIC_ASSERT(::std::numeric_limits<T>::is_specialized);
78#else
79   BOOST_ASSERT(std::numeric_limits<T>::is_specialized);
80#endif
81   T a = std::fabs(x);
82   if(a > T(0.5L))
83      return std::log(T(1.0) + x);
84   if(a < std::numeric_limits<T>::epsilon())
85      return x;
86   detail::log1p_series<T> s(x);
87   return detail::kahan_sum_series(s, std::numeric_limits<T>::digits + 2);
88}
89#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
90// these overloads work around a type deduction bug:
91inline float log1p(float z)
92{
93   return log1p<float>(z);
94}
95inline double log1p(double z)
96{
97   return log1p<double>(z);
98}
99inline long double log1p(long double z)
100{
101   return log1p<long double>(z);
102}
103#endif
104
105#ifdef log1p
106#  ifndef BOOST_HAS_LOG1P
107#     define BOOST_HAS_LOG1P
108#  endif
109#  undef log1p
110#endif
111
112#ifdef BOOST_HAS_LOG1P
113#  if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901)
114inline float log1p(float x){ return ::log1pf(x); }
115inline long double log1p(long double x){ return ::log1pl(x); }
116#else
117inline float log1p(float x){ return ::log1p(x); }
118#endif
119inline double log1p(double x){ return ::log1p(x); }
120#endif
121
122} } // namespaces
123
124#endif // BOOST_MATH_HYPOT_INCLUDED
Note: See TracBrowser for help on using the repository browser.