1 | // |
---|
2 | // Copyright (c) 2000-2002 |
---|
3 | // Joerg Walter, Mathias Koch |
---|
4 | // |
---|
5 | // Permission to use, copy, modify, distribute and sell this software |
---|
6 | // and its documentation for any purpose is hereby granted without fee, |
---|
7 | // provided that the above copyright notice appear in all copies and |
---|
8 | // that both that copyright notice and this permission notice appear |
---|
9 | // in supporting documentation. The authors make no representations |
---|
10 | // about the suitability of this software for any purpose. |
---|
11 | // It is provided "as is" without express or implied warranty. |
---|
12 | // |
---|
13 | // The authors gratefully acknowledge the support of |
---|
14 | // GeNeSys mbH & Co. KG in producing this work. |
---|
15 | // |
---|
16 | |
---|
17 | #ifndef _BOOST_UBLAS_BLAS_ |
---|
18 | #define _BOOST_UBLAS_BLAS_ |
---|
19 | |
---|
20 | #include <boost/numeric/ublas/traits.hpp> |
---|
21 | |
---|
22 | namespace boost { namespace numeric { namespace ublas { |
---|
23 | |
---|
24 | namespace blas_1 { |
---|
25 | |
---|
26 | /** \namespace boost::numeric::ublas::blas_1 |
---|
27 | \brief wrapper functions for level 1 blas |
---|
28 | */ |
---|
29 | |
---|
30 | |
---|
31 | /** \brief 1-Norm: \f$\sum_i |x_i|\f$ |
---|
32 | \ingroup blas1 |
---|
33 | */ |
---|
34 | template<class V> |
---|
35 | typename type_traits<typename V::value_type>::real_type |
---|
36 | asum (const V &v) { |
---|
37 | return norm_1 (v); |
---|
38 | } |
---|
39 | /** \brief 2-Norm: \f$\sum_i |x_i|^2\f$ |
---|
40 | \ingroup blas1 |
---|
41 | */ |
---|
42 | template<class V> |
---|
43 | typename type_traits<typename V::value_type>::real_type |
---|
44 | nrm2 (const V &v) { |
---|
45 | return norm_2 (v); |
---|
46 | } |
---|
47 | /** \brief element with larges absolute value: \f$\max_i |x_i|\f$ |
---|
48 | \ingroup blas1 |
---|
49 | */ |
---|
50 | template<class V> |
---|
51 | typename type_traits<typename V::value_type>::real_type |
---|
52 | amax (const V &v) { |
---|
53 | return norm_inf (v); |
---|
54 | } |
---|
55 | |
---|
56 | /** \brief inner product of vectors \a v1 and \a v2 |
---|
57 | \ingroup blas1 |
---|
58 | */ |
---|
59 | template<class V1, class V2> |
---|
60 | typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type |
---|
61 | dot (const V1 &v1, const V2 &v2) { |
---|
62 | return inner_prod (v1, v2); |
---|
63 | } |
---|
64 | |
---|
65 | /** \brief copy vector \a v2 to \a v1 |
---|
66 | \ingroup blas1 |
---|
67 | */ |
---|
68 | template<class V1, class V2> |
---|
69 | V1 & |
---|
70 | copy (V1 &v1, const V2 &v2) { |
---|
71 | return v1.assign (v2); |
---|
72 | } |
---|
73 | |
---|
74 | /** \brief swap vectors \a v1 and \a v2 |
---|
75 | \ingroup blas1 |
---|
76 | */ |
---|
77 | template<class V1, class V2> |
---|
78 | void swap (V1 &v1, V2 &v2) { |
---|
79 | v1.swap (v2); |
---|
80 | } |
---|
81 | |
---|
82 | /** \brief scale vector \a v with scalar \a t |
---|
83 | \ingroup blas1 |
---|
84 | */ |
---|
85 | template<class V, class T> |
---|
86 | V & |
---|
87 | scal (V &v, const T &t) { |
---|
88 | return v *= t; |
---|
89 | } |
---|
90 | |
---|
91 | /** \brief compute \a v1 = \a v1 + \a t * \a v2 |
---|
92 | \ingroup blas1 |
---|
93 | */ |
---|
94 | template<class V1, class T, class V2> |
---|
95 | V1 & |
---|
96 | axpy (V1 &v1, const T &t, const V2 &v2) { |
---|
97 | return v1.plus_assign (t * v2); |
---|
98 | } |
---|
99 | |
---|
100 | /** \brief apply plane rotation |
---|
101 | \ingroup blas1 |
---|
102 | */ |
---|
103 | template<class T1, class V1, class T2, class V2> |
---|
104 | void |
---|
105 | rot (const T1 &t1, V1 &v1, const T2 &t2, V2 &v2) { |
---|
106 | typedef typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type promote_type; |
---|
107 | vector<promote_type> vt (t1 * v1 + t2 * v2); |
---|
108 | v2.assign (- t2 * v1 + t1 * v2); |
---|
109 | v1.assign (vt); |
---|
110 | } |
---|
111 | |
---|
112 | } |
---|
113 | |
---|
114 | namespace blas_2 { |
---|
115 | |
---|
116 | /** \namespace boost::numeric::ublas::blas_2 |
---|
117 | \brief wrapper functions for level 2 blas |
---|
118 | */ |
---|
119 | |
---|
120 | /** \brief multiply vector \a v with triangular matrix \a m |
---|
121 | \ingroup blas2 |
---|
122 | \todo: check that matrix is really triangular |
---|
123 | */ |
---|
124 | template<class V, class M> |
---|
125 | V & |
---|
126 | tmv (V &v, const M &m) { |
---|
127 | return v = prod (m, v); |
---|
128 | } |
---|
129 | |
---|
130 | /** \brief solve \a m \a x = \a v in place, \a m is triangular matrix |
---|
131 | \ingroup blas2 |
---|
132 | */ |
---|
133 | template<class V, class M, class C> |
---|
134 | V & |
---|
135 | tsv (V &v, const M &m, C) { |
---|
136 | return v = solve (m, v, C ()); |
---|
137 | } |
---|
138 | |
---|
139 | /** \brief compute \a v1 = \a t1 * \a v1 + \a t2 * (\a m * \a v2) |
---|
140 | \ingroup blas2 |
---|
141 | */ |
---|
142 | template<class V1, class T1, class T2, class M, class V2> |
---|
143 | V1 & |
---|
144 | gmv (V1 &v1, const T1 &t1, const T2 &t2, const M &m, const V2 &v2) { |
---|
145 | return v1 = t1 * v1 + t2 * prod (m, v2); |
---|
146 | } |
---|
147 | |
---|
148 | /** \brief rank 1 update: \a m = \a m + \a t * (\a v1 * \a v2<sup>T</sup>) |
---|
149 | \ingroup blas2 |
---|
150 | */ |
---|
151 | template<class M, class T, class V1, class V2> |
---|
152 | M & |
---|
153 | gr (M &m, const T &t, const V1 &v1, const V2 &v2) { |
---|
154 | #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG |
---|
155 | return m += t * outer_prod (v1, v2); |
---|
156 | #else |
---|
157 | return m = m + t * outer_prod (v1, v2); |
---|
158 | #endif |
---|
159 | } |
---|
160 | |
---|
161 | /** \brief symmetric rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>T</sup>) |
---|
162 | \ingroup blas2 |
---|
163 | */ |
---|
164 | template<class M, class T, class V> |
---|
165 | M & |
---|
166 | sr (M &m, const T &t, const V &v) { |
---|
167 | #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG |
---|
168 | return m += t * outer_prod (v, v); |
---|
169 | #else |
---|
170 | return m = m + t * outer_prod (v, v); |
---|
171 | #endif |
---|
172 | } |
---|
173 | /** \brief hermitian rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>H</sup>) |
---|
174 | \ingroup blas2 |
---|
175 | */ |
---|
176 | template<class M, class T, class V> |
---|
177 | M & |
---|
178 | hr (M &m, const T &t, const V &v) { |
---|
179 | #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG |
---|
180 | return m += t * outer_prod (v, conj (v)); |
---|
181 | #else |
---|
182 | return m = m + t * outer_prod (v, conj (v)); |
---|
183 | #endif |
---|
184 | } |
---|
185 | |
---|
186 | /** \brief symmetric rank 2 update: \a m = \a m + \a t * |
---|
187 | (\a v1 * \a v2<sup>T</sup> + \a v2 * \a v1<sup>T</sup>) |
---|
188 | \ingroup blas2 |
---|
189 | */ |
---|
190 | template<class M, class T, class V1, class V2> |
---|
191 | M & |
---|
192 | sr2 (M &m, const T &t, const V1 &v1, const V2 &v2) { |
---|
193 | #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG |
---|
194 | return m += t * (outer_prod (v1, v2) + outer_prod (v2, v1)); |
---|
195 | #else |
---|
196 | return m = m + t * (outer_prod (v1, v2) + outer_prod (v2, v1)); |
---|
197 | #endif |
---|
198 | } |
---|
199 | /** \brief hermitian rank 2 update: \a m = \a m + |
---|
200 | \a t * (\a v1 * \a v2<sup>H</sup>) |
---|
201 | + \a v2 * (\a t * \a v1)<sup>H</sup>) |
---|
202 | \ingroup blas2 |
---|
203 | */ |
---|
204 | template<class M, class T, class V1, class V2> |
---|
205 | M & |
---|
206 | hr2 (M &m, const T &t, const V1 &v1, const V2 &v2) { |
---|
207 | #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG |
---|
208 | return m += t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1)); |
---|
209 | #else |
---|
210 | return m = m + t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1)); |
---|
211 | #endif |
---|
212 | } |
---|
213 | |
---|
214 | } |
---|
215 | |
---|
216 | namespace blas_3 { |
---|
217 | |
---|
218 | /** \namespace boost::numeric::ublas::blas_3 |
---|
219 | \brief wrapper functions for level 3 blas |
---|
220 | */ |
---|
221 | |
---|
222 | /** \brief triangular matrix multiplication |
---|
223 | \ingroup blas3 |
---|
224 | */ |
---|
225 | template<class M1, class T, class M2, class M3> |
---|
226 | M1 & |
---|
227 | tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3) { |
---|
228 | return m1 = t * prod (m2, m3); |
---|
229 | } |
---|
230 | |
---|
231 | /** \brief triangular solve \a m2 * \a x = \a t * \a m1 in place, |
---|
232 | \a m2 is a triangular matrix |
---|
233 | \ingroup blas3 |
---|
234 | */ |
---|
235 | template<class M1, class T, class M2, class C> |
---|
236 | M1 & |
---|
237 | tsm (M1 &m1, const T &t, const M2 &m2, C) { |
---|
238 | return m1 = solve (m2, t * m1, C ()); |
---|
239 | } |
---|
240 | |
---|
241 | /** \brief general matrix multiplication |
---|
242 | \ingroup blas3 |
---|
243 | */ |
---|
244 | template<class M1, class T1, class T2, class M2, class M3> |
---|
245 | M1 & |
---|
246 | gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) { |
---|
247 | return m1 = t1 * m1 + t2 * prod (m2, m3); |
---|
248 | } |
---|
249 | |
---|
250 | /** \brief symmetric rank k update: \a m1 = \a t * \a m1 + |
---|
251 | \a t2 * (\a m2 * \a m2<sup>T</sup>) |
---|
252 | \ingroup blas3 |
---|
253 | \todo use opb_prod() |
---|
254 | */ |
---|
255 | template<class M1, class T1, class T2, class M2> |
---|
256 | M1 & |
---|
257 | srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) { |
---|
258 | return m1 = t1 * m1 + t2 * prod (m2, trans (m2)); |
---|
259 | } |
---|
260 | /** \brief hermitian rank k update: \a m1 = \a t * \a m1 + |
---|
261 | \a t2 * (\a m2 * \a m2<sup>H</sup>) |
---|
262 | \ingroup blas3 |
---|
263 | \todo use opb_prod() |
---|
264 | */ |
---|
265 | template<class M1, class T1, class T2, class M2> |
---|
266 | M1 & |
---|
267 | hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) { |
---|
268 | return m1 = t1 * m1 + t2 * prod (m2, herm (m2)); |
---|
269 | } |
---|
270 | |
---|
271 | /** \brief generalized symmetric rank k update: |
---|
272 | \a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>T</sup>) |
---|
273 | + \a t2 * (\a m3 * \a m2<sup>T</sup>) |
---|
274 | \ingroup blas3 |
---|
275 | \todo use opb_prod() |
---|
276 | */ |
---|
277 | template<class M1, class T1, class T2, class M2, class M3> |
---|
278 | M1 & |
---|
279 | sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) { |
---|
280 | return m1 = t1 * m1 + t2 * (prod (m2, trans (m3)) + prod (m3, trans (m2))); |
---|
281 | } |
---|
282 | /** \brief generalized hermitian rank k update: |
---|
283 | \a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>H</sup>) |
---|
284 | + (\a m3 * (\a t2 * \a m2)<sup>H</sup>) |
---|
285 | \ingroup blas3 |
---|
286 | \todo use opb_prod() |
---|
287 | */ |
---|
288 | template<class M1, class T1, class T2, class M2, class M3> |
---|
289 | M1 & |
---|
290 | hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) { |
---|
291 | return m1 = t1 * m1 + t2 * prod (m2, herm (m3)) + type_traits<T2>::conj (t2) * prod (m3, herm (m2)); |
---|
292 | } |
---|
293 | |
---|
294 | } |
---|
295 | |
---|
296 | }}} |
---|
297 | |
---|
298 | #endif |
---|
299 | |
---|
300 | |
---|