1 | // Boost rational.hpp header file ------------------------------------------// |
---|
2 | |
---|
3 | // (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and |
---|
4 | // distribute this software is granted provided this copyright notice appears |
---|
5 | // in all copies. This software is provided "as is" without express or |
---|
6 | // implied warranty, and with no claim as to its suitability for any purpose. |
---|
7 | |
---|
8 | // See http://www.boost.org/libs/rational for documentation. |
---|
9 | |
---|
10 | // Credits: |
---|
11 | // Thanks to the boost mailing list in general for useful comments. |
---|
12 | // Particular contributions included: |
---|
13 | // Andrew D Jewell, for reminding me to take care to avoid overflow |
---|
14 | // Ed Brey, for many comments, including picking up on some dreadful typos |
---|
15 | // Stephen Silver contributed the test suite and comments on user-defined |
---|
16 | // IntType |
---|
17 | // Nickolay Mladenov, for the implementation of operator+= |
---|
18 | |
---|
19 | // Revision History |
---|
20 | // 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz) |
---|
21 | // 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config |
---|
22 | // (Joaquín M López Muñoz) |
---|
23 | // 27 Dec 05 Add Boolean conversion operator (Daryle Walker) |
---|
24 | // 28 Sep 02 Use _left versions of operators from operators.hpp |
---|
25 | // 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel) |
---|
26 | // 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams) |
---|
27 | // 05 Feb 01 Update operator>> to tighten up input syntax |
---|
28 | // 05 Feb 01 Final tidy up of gcd code prior to the new release |
---|
29 | // 27 Jan 01 Recode abs() without relying on abs(IntType) |
---|
30 | // 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm, |
---|
31 | // tidy up a number of areas, use newer features of operators.hpp |
---|
32 | // (reduces space overhead to zero), add operator!, |
---|
33 | // introduce explicit mixed-mode arithmetic operations |
---|
34 | // 12 Jan 01 Include fixes to handle a user-defined IntType better |
---|
35 | // 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David) |
---|
36 | // 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++ |
---|
37 | // 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not |
---|
38 | // affected (Beman Dawes) |
---|
39 | // 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer) |
---|
40 | // 14 Dec 99 Modifications based on comments from the boost list |
---|
41 | // 09 Dec 99 Initial Version (Paul Moore) |
---|
42 | |
---|
43 | #ifndef BOOST_RATIONAL_HPP |
---|
44 | #define BOOST_RATIONAL_HPP |
---|
45 | |
---|
46 | #include <iostream> // for std::istream and std::ostream |
---|
47 | #include <iomanip> // for std::noskipws |
---|
48 | #include <stdexcept> // for std::domain_error |
---|
49 | #include <string> // for std::string implicit constructor |
---|
50 | #include <boost/operators.hpp> // for boost::addable etc |
---|
51 | #include <cstdlib> // for std::abs |
---|
52 | #include <boost/call_traits.hpp> // for boost::call_traits |
---|
53 | #include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC |
---|
54 | #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND |
---|
55 | |
---|
56 | namespace boost { |
---|
57 | |
---|
58 | // Note: We use n and m as temporaries in this function, so there is no value |
---|
59 | // in using const IntType& as we would only need to make a copy anyway... |
---|
60 | template <typename IntType> |
---|
61 | IntType gcd(IntType n, IntType m) |
---|
62 | { |
---|
63 | // Avoid repeated construction |
---|
64 | IntType zero(0); |
---|
65 | |
---|
66 | // This is abs() - given the existence of broken compilers with Koenig |
---|
67 | // lookup issues and other problems, I code this explicitly. (Remember, |
---|
68 | // IntType may be a user-defined type). |
---|
69 | if (n < zero) |
---|
70 | n = -n; |
---|
71 | if (m < zero) |
---|
72 | m = -m; |
---|
73 | |
---|
74 | // As n and m are now positive, we can be sure that %= returns a |
---|
75 | // positive value (the standard guarantees this for built-in types, |
---|
76 | // and we require it of user-defined types). |
---|
77 | for(;;) { |
---|
78 | if(m == zero) |
---|
79 | return n; |
---|
80 | n %= m; |
---|
81 | if(n == zero) |
---|
82 | return m; |
---|
83 | m %= n; |
---|
84 | } |
---|
85 | } |
---|
86 | |
---|
87 | template <typename IntType> |
---|
88 | IntType lcm(IntType n, IntType m) |
---|
89 | { |
---|
90 | // Avoid repeated construction |
---|
91 | IntType zero(0); |
---|
92 | |
---|
93 | if (n == zero || m == zero) |
---|
94 | return zero; |
---|
95 | |
---|
96 | n /= gcd(n, m); |
---|
97 | n *= m; |
---|
98 | |
---|
99 | if (n < zero) |
---|
100 | n = -n; |
---|
101 | return n; |
---|
102 | } |
---|
103 | |
---|
104 | class bad_rational : public std::domain_error |
---|
105 | { |
---|
106 | public: |
---|
107 | explicit bad_rational() : std::domain_error("bad rational: zero denominator") {} |
---|
108 | }; |
---|
109 | |
---|
110 | template <typename IntType> |
---|
111 | class rational; |
---|
112 | |
---|
113 | template <typename IntType> |
---|
114 | rational<IntType> abs(const rational<IntType>& r); |
---|
115 | |
---|
116 | template <typename IntType> |
---|
117 | class rational : |
---|
118 | less_than_comparable < rational<IntType>, |
---|
119 | equality_comparable < rational<IntType>, |
---|
120 | less_than_comparable2 < rational<IntType>, IntType, |
---|
121 | equality_comparable2 < rational<IntType>, IntType, |
---|
122 | addable < rational<IntType>, |
---|
123 | subtractable < rational<IntType>, |
---|
124 | multipliable < rational<IntType>, |
---|
125 | dividable < rational<IntType>, |
---|
126 | addable2 < rational<IntType>, IntType, |
---|
127 | subtractable2 < rational<IntType>, IntType, |
---|
128 | subtractable2_left < rational<IntType>, IntType, |
---|
129 | multipliable2 < rational<IntType>, IntType, |
---|
130 | dividable2 < rational<IntType>, IntType, |
---|
131 | dividable2_left < rational<IntType>, IntType, |
---|
132 | incrementable < rational<IntType>, |
---|
133 | decrementable < rational<IntType> |
---|
134 | > > > > > > > > > > > > > > > > |
---|
135 | { |
---|
136 | typedef typename boost::call_traits<IntType>::param_type param_type; |
---|
137 | |
---|
138 | struct helper { IntType parts[2]; }; |
---|
139 | typedef IntType (helper::* bool_type)[2]; |
---|
140 | |
---|
141 | public: |
---|
142 | typedef IntType int_type; |
---|
143 | rational() : num(0), den(1) {} |
---|
144 | rational(param_type n) : num(n), den(1) {} |
---|
145 | rational(param_type n, param_type d) : num(n), den(d) { normalize(); } |
---|
146 | |
---|
147 | // Default copy constructor and assignment are fine |
---|
148 | |
---|
149 | // Add assignment from IntType |
---|
150 | rational& operator=(param_type n) { return assign(n, 1); } |
---|
151 | |
---|
152 | // Assign in place |
---|
153 | rational& assign(param_type n, param_type d); |
---|
154 | |
---|
155 | // Access to representation |
---|
156 | IntType numerator() const { return num; } |
---|
157 | IntType denominator() const { return den; } |
---|
158 | |
---|
159 | // Arithmetic assignment operators |
---|
160 | rational& operator+= (const rational& r); |
---|
161 | rational& operator-= (const rational& r); |
---|
162 | rational& operator*= (const rational& r); |
---|
163 | rational& operator/= (const rational& r); |
---|
164 | |
---|
165 | rational& operator+= (param_type i); |
---|
166 | rational& operator-= (param_type i); |
---|
167 | rational& operator*= (param_type i); |
---|
168 | rational& operator/= (param_type i); |
---|
169 | |
---|
170 | // Increment and decrement |
---|
171 | const rational& operator++(); |
---|
172 | const rational& operator--(); |
---|
173 | |
---|
174 | // Operator not |
---|
175 | bool operator!() const { return !num; } |
---|
176 | |
---|
177 | // Boolean conversion |
---|
178 | |
---|
179 | #if BOOST_WORKAROUND(__MWERKS__,<=0x3003) |
---|
180 | // The "ISO C++ Template Parser" option in CW 8.3 chokes on the |
---|
181 | // following, hence we selectively disable that option for the |
---|
182 | // offending memfun. |
---|
183 | #pragma parse_mfunc_templ off |
---|
184 | #endif |
---|
185 | |
---|
186 | operator bool_type() const { return operator !() ? 0 : &helper::parts; } |
---|
187 | |
---|
188 | #if BOOST_WORKAROUND(__MWERKS__,<=0x3003) |
---|
189 | #pragma parse_mfunc_templ reset |
---|
190 | #endif |
---|
191 | |
---|
192 | // Comparison operators |
---|
193 | bool operator< (const rational& r) const; |
---|
194 | bool operator== (const rational& r) const; |
---|
195 | |
---|
196 | bool operator< (param_type i) const; |
---|
197 | bool operator> (param_type i) const; |
---|
198 | bool operator== (param_type i) const; |
---|
199 | |
---|
200 | private: |
---|
201 | // Implementation - numerator and denominator (normalized). |
---|
202 | // Other possibilities - separate whole-part, or sign, fields? |
---|
203 | IntType num; |
---|
204 | IntType den; |
---|
205 | |
---|
206 | // Representation note: Fractions are kept in normalized form at all |
---|
207 | // times. normalized form is defined as gcd(num,den) == 1 and den > 0. |
---|
208 | // In particular, note that the implementation of abs() below relies |
---|
209 | // on den always being positive. |
---|
210 | void normalize(); |
---|
211 | }; |
---|
212 | |
---|
213 | // Assign in place |
---|
214 | template <typename IntType> |
---|
215 | inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d) |
---|
216 | { |
---|
217 | num = n; |
---|
218 | den = d; |
---|
219 | normalize(); |
---|
220 | return *this; |
---|
221 | } |
---|
222 | |
---|
223 | // Unary plus and minus |
---|
224 | template <typename IntType> |
---|
225 | inline rational<IntType> operator+ (const rational<IntType>& r) |
---|
226 | { |
---|
227 | return r; |
---|
228 | } |
---|
229 | |
---|
230 | template <typename IntType> |
---|
231 | inline rational<IntType> operator- (const rational<IntType>& r) |
---|
232 | { |
---|
233 | return rational<IntType>(-r.numerator(), r.denominator()); |
---|
234 | } |
---|
235 | |
---|
236 | // Arithmetic assignment operators |
---|
237 | template <typename IntType> |
---|
238 | rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r) |
---|
239 | { |
---|
240 | // This calculation avoids overflow, and minimises the number of expensive |
---|
241 | // calculations. Thanks to Nickolay Mladenov for this algorithm. |
---|
242 | // |
---|
243 | // Proof: |
---|
244 | // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1. |
---|
245 | // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1 |
---|
246 | // |
---|
247 | // The result is (a*d1 + c*b1) / (b1*d1*g). |
---|
248 | // Now we have to normalize this ratio. |
---|
249 | // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1 |
---|
250 | // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a. |
---|
251 | // But since gcd(a,b1)=1 we have h=1. |
---|
252 | // Similarly h|d1 leads to h=1. |
---|
253 | // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g |
---|
254 | // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g) |
---|
255 | // Which proves that instead of normalizing the result, it is better to |
---|
256 | // divide num and den by gcd((a*d1 + c*b1), g) |
---|
257 | |
---|
258 | // Protect against self-modification |
---|
259 | IntType r_num = r.num; |
---|
260 | IntType r_den = r.den; |
---|
261 | |
---|
262 | IntType g = gcd(den, r_den); |
---|
263 | den /= g; // = b1 from the calculations above |
---|
264 | num = num * (r_den / g) + r_num * den; |
---|
265 | g = gcd(num, g); |
---|
266 | num /= g; |
---|
267 | den *= r_den/g; |
---|
268 | |
---|
269 | return *this; |
---|
270 | } |
---|
271 | |
---|
272 | template <typename IntType> |
---|
273 | rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r) |
---|
274 | { |
---|
275 | // Protect against self-modification |
---|
276 | IntType r_num = r.num; |
---|
277 | IntType r_den = r.den; |
---|
278 | |
---|
279 | // This calculation avoids overflow, and minimises the number of expensive |
---|
280 | // calculations. It corresponds exactly to the += case above |
---|
281 | IntType g = gcd(den, r_den); |
---|
282 | den /= g; |
---|
283 | num = num * (r_den / g) - r_num * den; |
---|
284 | g = gcd(num, g); |
---|
285 | num /= g; |
---|
286 | den *= r_den/g; |
---|
287 | |
---|
288 | return *this; |
---|
289 | } |
---|
290 | |
---|
291 | template <typename IntType> |
---|
292 | rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r) |
---|
293 | { |
---|
294 | // Protect against self-modification |
---|
295 | IntType r_num = r.num; |
---|
296 | IntType r_den = r.den; |
---|
297 | |
---|
298 | // Avoid overflow and preserve normalization |
---|
299 | IntType gcd1 = gcd<IntType>(num, r_den); |
---|
300 | IntType gcd2 = gcd<IntType>(r_num, den); |
---|
301 | num = (num/gcd1) * (r_num/gcd2); |
---|
302 | den = (den/gcd2) * (r_den/gcd1); |
---|
303 | return *this; |
---|
304 | } |
---|
305 | |
---|
306 | template <typename IntType> |
---|
307 | rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r) |
---|
308 | { |
---|
309 | // Protect against self-modification |
---|
310 | IntType r_num = r.num; |
---|
311 | IntType r_den = r.den; |
---|
312 | |
---|
313 | // Avoid repeated construction |
---|
314 | IntType zero(0); |
---|
315 | |
---|
316 | // Trap division by zero |
---|
317 | if (r_num == zero) |
---|
318 | throw bad_rational(); |
---|
319 | if (num == zero) |
---|
320 | return *this; |
---|
321 | |
---|
322 | // Avoid overflow and preserve normalization |
---|
323 | IntType gcd1 = gcd<IntType>(num, r_num); |
---|
324 | IntType gcd2 = gcd<IntType>(r_den, den); |
---|
325 | num = (num/gcd1) * (r_den/gcd2); |
---|
326 | den = (den/gcd2) * (r_num/gcd1); |
---|
327 | |
---|
328 | if (den < zero) { |
---|
329 | num = -num; |
---|
330 | den = -den; |
---|
331 | } |
---|
332 | return *this; |
---|
333 | } |
---|
334 | |
---|
335 | // Mixed-mode operators |
---|
336 | template <typename IntType> |
---|
337 | inline rational<IntType>& |
---|
338 | rational<IntType>::operator+= (param_type i) |
---|
339 | { |
---|
340 | return operator+= (rational<IntType>(i)); |
---|
341 | } |
---|
342 | |
---|
343 | template <typename IntType> |
---|
344 | inline rational<IntType>& |
---|
345 | rational<IntType>::operator-= (param_type i) |
---|
346 | { |
---|
347 | return operator-= (rational<IntType>(i)); |
---|
348 | } |
---|
349 | |
---|
350 | template <typename IntType> |
---|
351 | inline rational<IntType>& |
---|
352 | rational<IntType>::operator*= (param_type i) |
---|
353 | { |
---|
354 | return operator*= (rational<IntType>(i)); |
---|
355 | } |
---|
356 | |
---|
357 | template <typename IntType> |
---|
358 | inline rational<IntType>& |
---|
359 | rational<IntType>::operator/= (param_type i) |
---|
360 | { |
---|
361 | return operator/= (rational<IntType>(i)); |
---|
362 | } |
---|
363 | |
---|
364 | // Increment and decrement |
---|
365 | template <typename IntType> |
---|
366 | inline const rational<IntType>& rational<IntType>::operator++() |
---|
367 | { |
---|
368 | // This can never denormalise the fraction |
---|
369 | num += den; |
---|
370 | return *this; |
---|
371 | } |
---|
372 | |
---|
373 | template <typename IntType> |
---|
374 | inline const rational<IntType>& rational<IntType>::operator--() |
---|
375 | { |
---|
376 | // This can never denormalise the fraction |
---|
377 | num -= den; |
---|
378 | return *this; |
---|
379 | } |
---|
380 | |
---|
381 | // Comparison operators |
---|
382 | template <typename IntType> |
---|
383 | bool rational<IntType>::operator< (const rational<IntType>& r) const |
---|
384 | { |
---|
385 | // Avoid repeated construction |
---|
386 | IntType zero(0); |
---|
387 | |
---|
388 | // If the two values have different signs, we don't need to do the |
---|
389 | // expensive calculations below. We take advantage here of the fact |
---|
390 | // that the denominator is always positive. |
---|
391 | if (num < zero && r.num >= zero) // -ve < +ve |
---|
392 | return true; |
---|
393 | if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero |
---|
394 | return false; |
---|
395 | |
---|
396 | // Avoid overflow |
---|
397 | IntType gcd1 = gcd<IntType>(num, r.num); |
---|
398 | IntType gcd2 = gcd<IntType>(r.den, den); |
---|
399 | return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1); |
---|
400 | } |
---|
401 | |
---|
402 | template <typename IntType> |
---|
403 | bool rational<IntType>::operator< (param_type i) const |
---|
404 | { |
---|
405 | // Avoid repeated construction |
---|
406 | IntType zero(0); |
---|
407 | |
---|
408 | // If the two values have different signs, we don't need to do the |
---|
409 | // expensive calculations below. We take advantage here of the fact |
---|
410 | // that the denominator is always positive. |
---|
411 | if (num < zero && i >= zero) // -ve < +ve |
---|
412 | return true; |
---|
413 | if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero |
---|
414 | return false; |
---|
415 | |
---|
416 | // Now, use the fact that n/d truncates towards zero as long as n and d |
---|
417 | // are both positive. |
---|
418 | // Divide instead of multiplying to avoid overflow issues. Of course, |
---|
419 | // division may be slower, but accuracy is more important than speed... |
---|
420 | if (num > zero) |
---|
421 | return (num/den) < i; |
---|
422 | else |
---|
423 | return -i < (-num/den); |
---|
424 | } |
---|
425 | |
---|
426 | template <typename IntType> |
---|
427 | bool rational<IntType>::operator> (param_type i) const |
---|
428 | { |
---|
429 | // Trap equality first |
---|
430 | if (num == i && den == IntType(1)) |
---|
431 | return false; |
---|
432 | |
---|
433 | // Otherwise, we can use operator< |
---|
434 | return !operator<(i); |
---|
435 | } |
---|
436 | |
---|
437 | template <typename IntType> |
---|
438 | inline bool rational<IntType>::operator== (const rational<IntType>& r) const |
---|
439 | { |
---|
440 | return ((num == r.num) && (den == r.den)); |
---|
441 | } |
---|
442 | |
---|
443 | template <typename IntType> |
---|
444 | inline bool rational<IntType>::operator== (param_type i) const |
---|
445 | { |
---|
446 | return ((den == IntType(1)) && (num == i)); |
---|
447 | } |
---|
448 | |
---|
449 | // Normalisation |
---|
450 | template <typename IntType> |
---|
451 | void rational<IntType>::normalize() |
---|
452 | { |
---|
453 | // Avoid repeated construction |
---|
454 | IntType zero(0); |
---|
455 | |
---|
456 | if (den == zero) |
---|
457 | throw bad_rational(); |
---|
458 | |
---|
459 | // Handle the case of zero separately, to avoid division by zero |
---|
460 | if (num == zero) { |
---|
461 | den = IntType(1); |
---|
462 | return; |
---|
463 | } |
---|
464 | |
---|
465 | IntType g = gcd<IntType>(num, den); |
---|
466 | |
---|
467 | num /= g; |
---|
468 | den /= g; |
---|
469 | |
---|
470 | // Ensure that the denominator is positive |
---|
471 | if (den < zero) { |
---|
472 | num = -num; |
---|
473 | den = -den; |
---|
474 | } |
---|
475 | } |
---|
476 | |
---|
477 | namespace detail { |
---|
478 | |
---|
479 | // A utility class to reset the format flags for an istream at end |
---|
480 | // of scope, even in case of exceptions |
---|
481 | struct resetter { |
---|
482 | resetter(std::istream& is) : is_(is), f_(is.flags()) {} |
---|
483 | ~resetter() { is_.flags(f_); } |
---|
484 | std::istream& is_; |
---|
485 | std::istream::fmtflags f_; // old GNU c++ lib has no ios_base |
---|
486 | }; |
---|
487 | |
---|
488 | } |
---|
489 | |
---|
490 | // Input and output |
---|
491 | template <typename IntType> |
---|
492 | std::istream& operator>> (std::istream& is, rational<IntType>& r) |
---|
493 | { |
---|
494 | IntType n = IntType(0), d = IntType(1); |
---|
495 | char c = 0; |
---|
496 | detail::resetter sentry(is); |
---|
497 | |
---|
498 | is >> n; |
---|
499 | c = is.get(); |
---|
500 | |
---|
501 | if (c != '/') |
---|
502 | is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base |
---|
503 | |
---|
504 | #if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT |
---|
505 | is >> std::noskipws; |
---|
506 | #else |
---|
507 | is.unsetf(ios::skipws); // compiles, but seems to have no effect. |
---|
508 | #endif |
---|
509 | is >> d; |
---|
510 | |
---|
511 | if (is) |
---|
512 | r.assign(n, d); |
---|
513 | |
---|
514 | return is; |
---|
515 | } |
---|
516 | |
---|
517 | // Add manipulators for output format? |
---|
518 | template <typename IntType> |
---|
519 | std::ostream& operator<< (std::ostream& os, const rational<IntType>& r) |
---|
520 | { |
---|
521 | os << r.numerator() << '/' << r.denominator(); |
---|
522 | return os; |
---|
523 | } |
---|
524 | |
---|
525 | // Type conversion |
---|
526 | template <typename T, typename IntType> |
---|
527 | inline T rational_cast( |
---|
528 | const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) |
---|
529 | { |
---|
530 | return static_cast<T>(src.numerator())/src.denominator(); |
---|
531 | } |
---|
532 | |
---|
533 | // Do not use any abs() defined on IntType - it isn't worth it, given the |
---|
534 | // difficulties involved (Koenig lookup required, there may not *be* an abs() |
---|
535 | // defined, etc etc). |
---|
536 | template <typename IntType> |
---|
537 | inline rational<IntType> abs(const rational<IntType>& r) |
---|
538 | { |
---|
539 | if (r.numerator() >= IntType(0)) |
---|
540 | return r; |
---|
541 | |
---|
542 | return rational<IntType>(-r.numerator(), r.denominator()); |
---|
543 | } |
---|
544 | |
---|
545 | } // namespace boost |
---|
546 | |
---|
547 | #endif // BOOST_RATIONAL_HPP |
---|
548 | |
---|