Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: downloads/boost_1_34_1/doc/html/lambda/s03.html @ 66

Last change on this file since 66 was 29, checked in by landauf, 16 years ago

updated boost from 1_33_1 to 1_34_1

File size: 11.8 KB
Line 
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
4<title>Introduction</title>
5<link rel="stylesheet" href="../boostbook.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.68.1">
7<link rel="start" href="../index.html" title="The Boost C++ Libraries BoostBook Documentation Subset">
8<link rel="up" href="../lambda.html" title="Chapter 8. Boost.Lambda">
9<link rel="prev" href="getting_started.html" title="Getting Started">
10<link rel="next" href="using_library.html" title="Using the library">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%">
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
15<td align="center"><a href="../../../index.htm">Home</a></td>
16<td align="center"><a href="../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="../../../people/people.htm">People</a></td>
18<td align="center"><a href="../../../more/faq.htm">FAQ</a></td>
19<td align="center"><a href="../../../more/index.htm">More</a></td>
20</table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="getting_started.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../lambda.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="using_library.html"><img src="../images/next.png" alt="Next"></a>
24</div>
25<div class="section" lang="en">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="id1243282"></a>Introduction</h2></div></div></div>
28<div class="toc"><dl>
29<dt><span class="section"><a href="s03.html#id1243287">Motivation</a></span></dt>
30<dt><span class="section"><a href="s03.html#id1243548">Introduction to lambda expressions</a></span></dt>
31</dl></div>
32<div class="section" lang="en">
33<div class="titlepage"><div><div><h3 class="title">
34<a name="id1243287"></a>Motivation</h3></div></div></div>
35<p>The Standard Template Library (STL)
36        [<a href="../lambda.html#cit:stepanov:94" title="[STL94]"><span class="abbrev">STL94</span></a>], now part of the C++ Standard Library [<a href="../lambda.html#cit:c++:98" title="[C++98]"><span class="abbrev">C++98</span></a>], is a generic container and algorithm library.
37Typically STL algorithms operate on container elements via <span class="emphasis"><em>function objects</em></span>. These function objects are passed as arguments to the algorithms.
38</p>
39<p>
40Any C++ construct that can be called with the function call syntax
41is a function object.
42The STL contains predefined function objects for some common cases (such as <code class="literal">plus</code>, <code class="literal">less</code> and <code class="literal">not1</code>).
43As an example, one possible implementation for the standard <code class="literal">plus</code> template is:
44
45</p>
46<pre class="programlisting">
47template &lt;class T&gt; 
48struct plus : public binary_function&lt;T, T, T&gt; {
49  T operator()(const T&amp; i, const T&amp; j) const {
50    return i + j;
51  }
52};
53</pre>
54<p>
55
56The base class <code class="literal">binary_function&lt;T, T, T&gt;</code> contains typedefs for the argument and return types of the function object, which are needed to make the function object <span class="emphasis"><em>adaptable</em></span>.
57</p>
58<p>
59In addition to the basic function object classes, such as the one above,
60the STL contains <span class="emphasis"><em>binder</em></span> templates for creating a unary function object from an adaptable binary function object by fixing one of the arguments to a constant value.
61For example, instead of having to explicitly write a function object class like:
62
63</p>
64<pre class="programlisting">
65class plus_1 {
66  int _i;
67public:
68  plus_1(const int&amp; i) : _i(i) {}
69  int operator()(const int&amp; j) { return _i + j; }
70};
71</pre>
72<p>
73
74the equivalent functionality can be achieved with the <code class="literal">plus</code> template and one of the binder templates (<code class="literal">bind1st</code>).
75E.g., the following two expressions create function objects with identical functionalities;
76when invoked, both return the result of adding <code class="literal">1</code> to the argument of the function object:
77
78</p>
79<pre class="programlisting">
80plus_1(1)
81bind1st(plus&lt;int&gt;(), 1)
82</pre>
83<p>
84
85The subexpression <code class="literal">plus&lt;int&gt;()</code> in the latter line is a binary function object which computes the sum of two integers, and <code class="literal">bind1st</code> invokes this function object partially binding the first argument to <code class="literal">1</code>.
86As an example of using the above function object, the following code adds <code class="literal">1</code> to each element of some container <code class="literal">a</code> and outputs the results into the standard output stream <code class="literal">cout</code>.
87
88</p>
89<pre class="programlisting">
90transform(a.begin(), a.end(), ostream_iterator&lt;int&gt;(cout),
91          bind1st(plus&lt;int&gt;(), 1));
92</pre>
93<p>
94
95</p>
96<p>
97To make the binder templates more generally applicable, the STL contains <span class="emphasis"><em>adaptors</em></span> for making
98pointers or references to functions, and pointers to member functions,
99adaptable.
100
101Finally, some STL implementations contain function composition operations as
102extensions to the standard [<a href="../lambda.html#cit:sgi:02" title="[SGI02]"><span class="abbrev">SGI02</span></a>].
103      </p>
104<p>
105All these tools aim at one goal: to make it possible to specify
106<span class="emphasis"><em>unnamed functions</em></span> in a call of an STL algorithm,
107in other words, to pass code fragments as an argument to a function.
108
109However, this goal is attained only partially.
110The simple example above shows that the definition of unnamed functions
111with the standard tools is cumbersome.
112
113Complex expressions involving functors, adaptors, binders and
114function composition operations tend to be difficult to comprehend.
115
116In addition to this, there are significant restrictions in applying
117the standard tools. E.g. the standard binders allow only one argument
118of a binary function to be bound; there are no binders for
1193-ary, 4-ary etc. functions.
120</p>
121<p>
122The Boost Lambda Library provides solutions for the problems described above:
123
124</p>
125<div class="itemizedlist"><ul type="disc">
126<li>
127<p>
128Unnamed functions can be created easily with an intuitive syntax.
129
130The above example can be written as:
131
132</p>
133<pre class="programlisting">
134transform(a.begin(), a.end(), ostream_iterator&lt;int&gt;(cout),
135          1 + _1);
136</pre>
137<p>
138
139or even more intuitively:
140
141</p>
142<pre class="programlisting">
143for_each(a.begin(), a.end(), cout &lt;&lt; (1 + _1));
144</pre>
145<p>
146</p>
147</li>
148<li><p>
149Most of the restrictions in argument binding are removed,
150arbitrary arguments of practically any C++ function can be bound.
151</p></li>
152<li><p>
153Separate function composition operations are not needed,
154as function composition is supported implicitly.
155
156</p></li>
157</ul></div>
158<p>
159
160</p>
161</div>
162<div class="section" lang="en">
163<div class="titlepage"><div><div><h3 class="title">
164<a name="id1243548"></a>Introduction to lambda expressions</h3></div></div></div>
165<div class="toc"><dl>
166<dt><span class="section"><a href="s03.html#lambda.partial_function_application">Partial function application</a></span></dt>
167<dt><span class="section"><a href="s03.html#lambda.terminology">Terminology</a></span></dt>
168</dl></div>
169<p>
170        Lambda expression are common in functional programming languages.
171        Their syntax varies between languages (and between different forms of lambda calculus), but the basic form of a lambda expressions is:
172
173
174</p>
175<pre class="programlisting">
176lambda x<sub>1</sub> ... x<sub>n</sub>.e
177</pre>
178<p>
179       
180
181        A lambda expression defines an unnamed function and consists of:
182        </p>
183<div class="itemizedlist"><ul type="disc">
184<li><p>
185              the parameters of this function: <code class="literal">x<sub>1</sub> ... x<sub>n</sub></code>.
186             
187            </p></li>
188<li><p>the expression e which computes the value of the function in terms of the parameters <code class="literal">x<sub>1</sub> ... x<sub>n</sub></code>.
189            </p></li>
190</ul></div>
191<p>
192
193        A simple example of a lambda expression is
194</p>
195<pre class="programlisting">
196lambda x y.x+y
197</pre>
198<p>
199Applying the lambda function means substituting the formal parameters with the actual arguments:
200</p>
201<pre class="programlisting">
202(lambda x y.x+y) 2 3 = 2 + 3 = 5
203</pre>
204<p>
205
206
207      </p>
208<p>
209In the C++ version of lambda expressions the <code class="literal">lambda x<sub>1</sub> ... x<sub>n</sub></code> part is missing and the formal parameters have predefined names.
210In the current version of the library,
211there are three such predefined formal parameters,
212called <span class="emphasis"><em>placeholders</em></span>:
213<code class="literal">_1</code>, <code class="literal">_2</code> and <code class="literal">_3</code>.
214They refer to the first, second and third argument of the function defined
215by the lambda expression.
216       
217For example, the C++ version of the definition
218</p>
219<pre class="programlisting">lambda x y.x+y</pre>
220<p>
221is
222</p>
223<pre class="programlisting">_1 + _2</pre>
224<p>
225</p>
226<p>
227Hence, there is no syntactic keyword for C++ lambda expressions.
228        The use of a placeholder as an operand implies that the operator invocation is a lambda expression.
229        However, this is true only for operator invocations.
230        Lambda expressions containing function calls, control structures, casts etc. require special syntactic constructs.
231        Most importantly, function calls need to be wrapped inside a <code class="literal">bind</code> function.
232
233        As an example, consider the lambda expression:
234
235        </p>
236<pre class="programlisting">lambda x y.foo(x,y)</pre>
237<p>
238
239        Rather than <code class="literal">foo(_1, _2)</code>, the C++ counterpart for this expression is:
240
241        </p>
242<pre class="programlisting">bind(foo, _1, _2)</pre>
243<p>
244
245        We refer to this type of C++ lambda expressions as <span class="emphasis"><em>bind expressions</em></span>.
246      </p>
247<p>A lambda expression defines a C++ function object, hence function application syntax is like calling any other function object, for instance: <code class="literal">(_1 + _2)(i, j)</code>.
248
249
250      </p>
251<div class="section" lang="en">
252<div class="titlepage"><div><div><h4 class="title">
253<a name="lambda.partial_function_application"></a>Partial function application</h4></div></div></div>
254<p>
255A bind expression is in effect a <span class="emphasis"><em>partial function application</em></span>.
256In partial function application, some of the arguments of a function are bound to fixed values.
257          The result is another function, with possibly fewer arguments.
258          When called with the unbound arguments, this new function invokes the original function with the merged argument list of bound and unbound arguments.
259        </p>
260</div>
261<div class="section" lang="en">
262<div class="titlepage"><div><div><h4 class="title">
263<a name="lambda.terminology"></a>Terminology</h4></div></div></div>
264<p>
265          A lambda expression defines a function. A C++ lambda expression concretely constructs a function object, <span class="emphasis"><em>a functor</em></span>, when evaluated. We use the name <span class="emphasis"><em>lambda functor</em></span> to refer to such a function object.
266          Hence, in the terminology adopted here, the result of evaluating a lambda expression is a lambda functor.
267        </p>
268</div>
269</div>
270</div>
271<table width="100%"><tr>
272<td align="left"></td>
273<td align="right"><small>Copyright © 1999-2004 Jaakko Järvi, Gary Powell</small></td>
274</tr></table>
275<hr>
276<div class="spirit-nav">
277<a accesskey="p" href="getting_started.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../lambda.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="using_library.html"><img src="../images/next.png" alt="Next"></a>
278</div>
279</body>
280</html>
Note: See TracBrowser for help on using the repository browser.