1 | <HTML> |
---|
2 | <!-- |
---|
3 | -- Copyright (c) Jeremy Siek 2000, 2001 |
---|
4 | -- |
---|
5 | -- Distributed under the Boost Software License, Version 1.0. |
---|
6 | -- (See accompanying file LICENSE_1_0.txt or copy at |
---|
7 | -- http://www.boost.org/LICENSE_1_0.txt) |
---|
8 | --> |
---|
9 | <Head> |
---|
10 | <Title>Boost Graph Library: Breadth-First Search</Title> |
---|
11 | <BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b" |
---|
12 | ALINK="#ff0000"> |
---|
13 | <IMG SRC="../../../boost.png" |
---|
14 | ALT="C++ Boost" width="277" height="86"> |
---|
15 | |
---|
16 | <BR Clear> |
---|
17 | |
---|
18 | <H1><A NAME="sec:bfs"> |
---|
19 | <img src="figs/python.gif" alt="(Python)"/> |
---|
20 | <TT>breadth_first_search</TT> |
---|
21 | </H1> |
---|
22 | |
---|
23 | <P> |
---|
24 | <PRE> |
---|
25 | <i>// named parameter version</i> |
---|
26 | template <class Graph, class P, class T, class R> |
---|
27 | void breadth_first_search(Graph& G, |
---|
28 | typename graph_traits<Graph>::vertex_descriptor s, |
---|
29 | const bgl_named_params<P, T, R>& params); |
---|
30 | |
---|
31 | <i>// non-named parameter version</i> |
---|
32 | template <class Graph, class Buffer, class BFSVisitor, |
---|
33 | class ColorMap> |
---|
34 | void breadth_first_search(const Graph& g, |
---|
35 | typename graph_traits<Graph>::vertex_descriptor s, |
---|
36 | Buffer& Q, BFSVisitor vis, ColorMap color); |
---|
37 | </PRE> |
---|
38 | |
---|
39 | |
---|
40 | <p> |
---|
41 | The <tt>breadth_first_search()</tt> function performs a breadth-first |
---|
42 | traversal [<a href="./bibliography.html#moore59">49</a>] of a directed |
---|
43 | or undirected graph. A breadth-first traversal visits vertices that |
---|
44 | are closer to the source before visiting vertices that are further |
---|
45 | away. In this context ``distance'' is defined as the number of edges |
---|
46 | in the shortest path from the source vertex. The |
---|
47 | <tt>breadth_first_search()</tt> function can be used to compute the |
---|
48 | shortest path from the source to all reachable vertices and the |
---|
49 | resulting shortest-path distances. For more definitions related to BFS |
---|
50 | see section <a href="./graph_theory_review.html#sec:bfs-algorithm"> |
---|
51 | Breadth-First Search</a>. |
---|
52 | </p> |
---|
53 | |
---|
54 | <p> |
---|
55 | BFS uses two data structures to to implement the traversal: a color |
---|
56 | marker for each vertex and a queue. White vertices are undiscovered |
---|
57 | while gray vertices are discovered but have undiscovered adjacent |
---|
58 | vertices. Black vertices are discovered and are adjacent to only other |
---|
59 | black or gray vertices. The algorithm proceeds by removing a vertex |
---|
60 | </i>u</i> from the queue and examining each out-edge <i>(u,v)</i>. If an |
---|
61 | adjacent vertex <i>v</i> is not already discovered, it is colored gray and |
---|
62 | placed in the queue. After all of the out-edges are examined, vertex |
---|
63 | <i>u</i> is colored black and the process is repeated. Pseudo-code for the |
---|
64 | BFS algorithm is a listed below. |
---|
65 | </p> |
---|
66 | |
---|
67 | <table> |
---|
68 | <tr> |
---|
69 | <td valign="top"> |
---|
70 | <pre> |
---|
71 | BFS(<i>G</i>, <i>s</i>) |
---|
72 | <b>for</b> each vertex <i>u in V[G]</i> |
---|
73 | <i>color[u] :=</i> WHITE |
---|
74 | <i>d[u] := infinity</i> |
---|
75 | <i>p[u] := u</i> |
---|
76 | <b>end for</b> |
---|
77 | <i>color[s] :=</i> GRAY |
---|
78 | <i>d[s] := 0</i> |
---|
79 | ENQUEUE(<i>Q</i>, <i>s</i>) |
---|
80 | <b>while</b> (<i>Q != Ø</i>) |
---|
81 | <i>u :=</i> DEQUEUE(Q) |
---|
82 | <b>for</b> each vertex <i>v in Adj[u]</i> |
---|
83 | <b>if</b> (<i>color[v] =</i> WHITE) |
---|
84 | <i>color[v] :=</i> GRAY |
---|
85 | <i>d[v] := d[u] + 1</i> |
---|
86 | <i>p[v] := u</i> |
---|
87 | ENQUEUE(<i>Q</i>, <i>v</i>) |
---|
88 | <b>else</b> |
---|
89 | <b>if</b> (<i>color[v] =</i> GRAY) |
---|
90 | ... |
---|
91 | <b>else</b> |
---|
92 | ... |
---|
93 | <b>end for</b> |
---|
94 | <i>color[u] :=</i> BLACK |
---|
95 | <b>end while</b> |
---|
96 | return (<i>d</i>, <i>p</i>) |
---|
97 | </pre> |
---|
98 | </td> |
---|
99 | <td valign="top"> |
---|
100 | <pre> |
---|
101 | |
---|
102 | initialize vertex <i>u</i> |
---|
103 | |
---|
104 | |
---|
105 | |
---|
106 | |
---|
107 | |
---|
108 | |
---|
109 | discover vertex <i>s</i> |
---|
110 | |
---|
111 | examine vertex <i>u</i> |
---|
112 | examine edge <i>(u,v)</i> |
---|
113 | <i>(u,v)</i> is a tree edge |
---|
114 | |
---|
115 | |
---|
116 | |
---|
117 | discover vertex <i>v</i> |
---|
118 | <i>(u,v)</i> is a non-tree edge |
---|
119 | |
---|
120 | <i>(u,v)</i> has a gray target |
---|
121 | |
---|
122 | <i>(u,v)</i> has a black target |
---|
123 | |
---|
124 | finish vertex <i>u</i> |
---|
125 | </pre> |
---|
126 | </tr> |
---|
127 | </table> |
---|
128 | |
---|
129 | The <tt>breadth_first_search()</tt> function can be extended with |
---|
130 | user-defined actions that will be called a certain event points. The |
---|
131 | actions must be provided in the form of a visitor object, that is, an |
---|
132 | object who's type meets the requirements for a <a |
---|
133 | href="./BFSVisitor.html">BFS Visitor</a>. In the above pseudo-code, |
---|
134 | the event points are the labels on the right. Also a description of |
---|
135 | each event point is given below. By default, the |
---|
136 | <tt>breadth_first_search()</tt> function does not carry out any |
---|
137 | actions, not even recording distances or predecessors. However these |
---|
138 | can be easily added using the <a |
---|
139 | href="./distance_recorder.html"><tt>distance_recorder</tt></a> and <a |
---|
140 | href="./predecessor_recorder.html"><tt>predecessor_recorder</tt></a> |
---|
141 | event visitors. |
---|
142 | |
---|
143 | |
---|
144 | <H3>Where Defined</H3> |
---|
145 | |
---|
146 | <P> |
---|
147 | <a href="../../../boost/graph/breadth_first_search.hpp"><TT>boost/graph/breadth_first_search.hpp</TT></a> |
---|
148 | |
---|
149 | <P> |
---|
150 | |
---|
151 | <h3>Parameters</h3> |
---|
152 | |
---|
153 | IN: <tt>Graph& g</tt> |
---|
154 | <blockquote> |
---|
155 | A directed or undirected graph. The graph type must |
---|
156 | be a model of <a href="./VertexListGraph.html">Vertex List Graph</a> |
---|
157 | and <a href="./IncidenceGraph.html">Incidence Graph</a>.<br> |
---|
158 | |
---|
159 | <b>Python</b>: The parameter is named <tt>graph</tt>. |
---|
160 | </blockquote> |
---|
161 | |
---|
162 | IN: <tt>vertex_descriptor s</tt> |
---|
163 | <blockquote> |
---|
164 | The source vertex where the search is started.<br> |
---|
165 | |
---|
166 | <b>Python</b>: The parameter is named <tt>root_vertex</tt>. |
---|
167 | </blockquote> |
---|
168 | |
---|
169 | |
---|
170 | <h3>Named Parameters</h3> |
---|
171 | |
---|
172 | IN: <tt>visitor(BFSVisitor vis)</tt> |
---|
173 | <blockquote> |
---|
174 | A visitor object that is invoked inside the algorithm at the |
---|
175 | event-points specified by the <a href="BFSVisitor.html">BFS |
---|
176 | Visitor</a> concept. The visitor object is passed by value <a |
---|
177 | href="#1">[1]</a>.<br> <b>Default:</b> |
---|
178 | <tt>bfs_visitor<null_visitor></tt> <br> |
---|
179 | |
---|
180 | <b>Python</b>: The parameter should be an object that derives from |
---|
181 | the <a href="BFSVisitor.html#python"><tt>BFSVisitor</tt></a> type of the graph. |
---|
182 | |
---|
183 | </blockquote> |
---|
184 | |
---|
185 | UTIL/OUT: <tt>color_map(ColorMap color)</tt> |
---|
186 | <blockquote> |
---|
187 | This is used by the algorithm to keep track of its progress through |
---|
188 | the graph. The user need not initialize the color map before calling |
---|
189 | <tt>breadth_first_search()</tt> since the algorithm initializes the |
---|
190 | color of every vertex to white at the start of the algorihtm. If you |
---|
191 | need to perform multiple breadth-first searches on a graph (for |
---|
192 | example, if there are some disconnected components) then use the <a |
---|
193 | href="./breadth_first_visit.html"><tt>breadth_first_visit()</tt></a> |
---|
194 | function and do your own color initialization. |
---|
195 | |
---|
196 | <p>The type <tt>ColorMap</tt> must be a model of <a |
---|
197 | href="../../property_map/ReadWritePropertyMap.html">Read/Write |
---|
198 | Property Map</a> and its key type must be the graph's vertex |
---|
199 | descriptor type and the value type of the color map must model |
---|
200 | <a href="./ColorValue.html">ColorValue</a>.<br> |
---|
201 | <b>Default:</b> an <a |
---|
202 | href="../../property_map/iterator_property_map.html"> |
---|
203 | </tt>iterator_property_map</tt></a> created from a |
---|
204 | <tt>std::vector</tt> of <tt>default_color_type</tt> of size |
---|
205 | <tt>num_vertices(g)</tt> and using the <tt>i_map</tt> for the index |
---|
206 | map.<br> |
---|
207 | |
---|
208 | <b>Python</b>: The color map must be a <tt>vertex_color_map</tt> for |
---|
209 | the graph. |
---|
210 | </blockquote> |
---|
211 | |
---|
212 | IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt> |
---|
213 | <blockquote> |
---|
214 | This maps each vertex to an integer in the range <tt>[0, |
---|
215 | num_vertices(g))</tt>. This parameter is only necessary when the |
---|
216 | default color property map is used. The type <tt>VertexIndexMap</tt> |
---|
217 | must be a model of <a |
---|
218 | href="../../property_map/ReadablePropertyMap.html">Readable Property |
---|
219 | Map</a>. The value type of the map must be an integer type. The |
---|
220 | vertex descriptor type of the graph needs to be usable as the key |
---|
221 | type of the map.<br> |
---|
222 | |
---|
223 | <b>Default:</b> <tt>get(vertex_index, g)</tt>. |
---|
224 | Note: if you use this default, make sure your graph has |
---|
225 | an internal <tt>vertex_index</tt> property. For example, |
---|
226 | <tt>adjacenty_list</tt> with <tt>VertexList=listS</tt> does |
---|
227 | not have an internal <tt>vertex_index</tt> property.<br> |
---|
228 | |
---|
229 | <b>Python</b>: Unsupported parameter. |
---|
230 | </blockquote> |
---|
231 | |
---|
232 | UTIL: <tt>buffer(Buffer& Q)</tt> |
---|
233 | <blockquote> |
---|
234 | The queue used to determine the order in which vertices will be |
---|
235 | discovered. If a FIFO queue is used, then the traversal will |
---|
236 | be according to the usual BFS ordering. Other types of queues |
---|
237 | can be used, but the traversal order will be different. |
---|
238 | For example Dijkstra's algorithm can be implemented |
---|
239 | using a priority queue. The type <tt>Buffer</tt> must be a model of |
---|
240 | <a href="./Buffer.html">Buffer</a>.<br> The <tt>value_type</tt> |
---|
241 | of the buffer must be the <tt>vertex_descriptor</tt> type for the graph.<br> |
---|
242 | <b>Default:</b> <tt>boost::queue</tt><br> |
---|
243 | |
---|
244 | <b>Python</b>: The buffer must derive from the <a |
---|
245 | href="./Buffer.html">Buffer</a> type for the graph. |
---|
246 | |
---|
247 | </blockquote> |
---|
248 | |
---|
249 | |
---|
250 | <H3><A NAME="SECTION001330300000000000000"> |
---|
251 | Complexity</A> |
---|
252 | </H3> |
---|
253 | |
---|
254 | <P> |
---|
255 | The time complexity is <i>O(E + V)</i>. |
---|
256 | |
---|
257 | <P> |
---|
258 | |
---|
259 | <h3>Visitor Event Points</h3> |
---|
260 | |
---|
261 | <ul> |
---|
262 | <li><b><tt>vis.initialize_vertex(v, g)</tt></b> is invoked on every vertex |
---|
263 | before the start of the search. |
---|
264 | |
---|
265 | <li><b><tt>vis.examine_vertex(u, g)</tt></b>r is invoked in each |
---|
266 | vertex as it is removed from the queue. |
---|
267 | |
---|
268 | <li><b><tt>vis.examine_edge(e, g)</tt></b> is invoked on every out-edge |
---|
269 | of each vertex immediately after the vertex is removed from the queue. |
---|
270 | |
---|
271 | <li><b><tt>vis.tree_edge(e, g)</tt></b> is invoked (in addition to |
---|
272 | <tt>examine_edge()</tt>) if the edge is a tree edge. The |
---|
273 | target vertex of edge <tt>e</tt> is discovered at this time. |
---|
274 | |
---|
275 | <li><b><tt>vis.discover_vertex(u, g)</tt></b> is invoked the first time the |
---|
276 | algorithm encounters vertex <i>u</i>. All vertices closer to the |
---|
277 | source vertex have been discovered, and vertices further from the |
---|
278 | source have not yet been discovered. |
---|
279 | |
---|
280 | <li><b><tt>vis.non_tree_edge(e, g)</tt></b> is invoked (in addition to |
---|
281 | <tt>examine_edge()</tt>) if the edge is not a tree edge. |
---|
282 | |
---|
283 | <li><b><tt>vis.gray_target(e, g)</tt></b> is invoked (in addition to |
---|
284 | <tt>non_tree_edge()</tt>) if the target vertex is colored gray at the |
---|
285 | time of examination. The color gray indicates that |
---|
286 | the vertex is currently in the queue. |
---|
287 | |
---|
288 | <li><b><tt>vis.black_target(e, g)</tt></b> is invoked (in addition to |
---|
289 | <tt>non_tree_edge()</tt>) if the target vertex is colored black at the |
---|
290 | time of examination. The color black indicates that the |
---|
291 | vertex is no longer in the queue. |
---|
292 | |
---|
293 | <li><b><tt>vis.finish_vertex(u, g)</tt></b> is invoked after all of the out |
---|
294 | edges of <i>u</i> have been examined and all of the adjacent vertices |
---|
295 | have been discovered. |
---|
296 | |
---|
297 | </ul> |
---|
298 | |
---|
299 | <H3><A NAME="SECTION001330400000000000000"> |
---|
300 | Example</A> |
---|
301 | </H3> |
---|
302 | |
---|
303 | <P> |
---|
304 | The example in <a |
---|
305 | href="../example/bfs-example.cpp"><TT>example/bfs-example.cpp</TT></a> |
---|
306 | demonstrates using the BGL Breadth-first search algorithm on the graph |
---|
307 | from <A HREF="./graph_theory_review.html#fig:bfs-example">Figure |
---|
308 | 5</A>. The file |
---|
309 | <a href="../example/bfs-example2.cpp"><TT>example/bfs-example2.cpp</TT></a> |
---|
310 | contains the same example, except that the <tt>adacency_list</tt> |
---|
311 | class used has <tt>VertexList</tt> and <tt>EdgeList</tt> set |
---|
312 | to <tt>listS</tt>. |
---|
313 | </P> |
---|
314 | |
---|
315 | <h3>See Also</h3> |
---|
316 | |
---|
317 | <a href="./bfs_visitor.html"><tt>bfs_visitor</tt></a> and |
---|
318 | <a href="./depth_first_search.html"><tt>depth_first_search()</tt></a> |
---|
319 | |
---|
320 | <h3>Notes</h3> |
---|
321 | |
---|
322 | <p><a name="1">[1]</a> |
---|
323 | Since the visitor parameter is passed by value, if your visitor |
---|
324 | contains state then any changes to the state during the algorithm |
---|
325 | will be made to a copy of the visitor object, not the visitor object |
---|
326 | passed in. Therefore you may want the visitor to hold this state by |
---|
327 | pointer or reference. |
---|
328 | |
---|
329 | <br> |
---|
330 | <HR> |
---|
331 | <TABLE> |
---|
332 | <TR valign=top> |
---|
333 | <TD nowrap>Copyright © 2000-2001</TD><TD> |
---|
334 | <A HREF="../../../people/jeremy_siek.htm">Jeremy Siek</A>, Indiana University (<A HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>) |
---|
335 | </TD></TR></TABLE> |
---|
336 | |
---|
337 | </BODY> |
---|
338 | </HTML> |
---|