1 | <html><head><!-- |
---|
2 | -- Copyright 2005 Aaron Windsor |
---|
3 | -- |
---|
4 | -- Use, modification and distribution is subject to the Boost Software |
---|
5 | -- License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at |
---|
6 | -- http://www.boost.org/LICENSE_1_0.txt) |
---|
7 | -- |
---|
8 | -- Author: Aaron Windsor |
---|
9 | --><title>Boost Graph Library: Maximum Cardinality Matching</title></head> |
---|
10 | <body alink="#ff0000" bgcolor="#ffffff" link="#0000ee" text="#000000" vlink="#551a8b"> |
---|
11 | <img src="../../../boost.png" alt="C++ Boost" height="86" width="277"> |
---|
12 | <br clear=""> |
---|
13 | <h1> |
---|
14 | <a name="sec:maximum_cardinality_matching">Maximum Cardinality Matching</a> |
---|
15 | </h1> |
---|
16 | <pre> |
---|
17 | template <typename Graph, typename MateMap> |
---|
18 | void edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate); |
---|
19 | |
---|
20 | template <typename Graph, typename MateMap, typename VertexIndexMap> |
---|
21 | void edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate, VertexIndexMap vm); |
---|
22 | |
---|
23 | template <typename Graph, typename MateMap> |
---|
24 | bool checked_edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate); |
---|
25 | |
---|
26 | template <typename Graph, typename MateMap, typename VertexIndexMap> |
---|
27 | bool checked_edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate, VertexIndexMap vm); |
---|
28 | </pre> |
---|
29 | <p> |
---|
30 | <a name="sec:articulation_points">A <i>matching</i> is a subset of the edges |
---|
31 | of a graph such that no two edges share a common vertex. |
---|
32 | Two different matchings in the same graph are illustrated below (edges in the |
---|
33 | matching are colored blue.) The matching on the left is a <i>maximal matching</i>, |
---|
34 | meaning that its size can't be increased by adding edges. The matching on the |
---|
35 | right is a <i>maximum cardinality matching</i>, meaning that is has maximum size |
---|
36 | over all matchings in the graph. |
---|
37 | |
---|
38 | </a></p><p></p><center> |
---|
39 | <table border="0"> |
---|
40 | <tr> |
---|
41 | <td><a name="sec:articulation_points"><img src="figs/maximal-match.png"></a></td> |
---|
42 | <td width="150"></td> |
---|
43 | <td><a name="sec:articulation_points"><img src="figs/maximum-match.png"></a></td> |
---|
44 | </tr> |
---|
45 | </table> |
---|
46 | </center> |
---|
47 | |
---|
48 | <p> |
---|
49 | Both <tt>edmonds_maximum_cardinality_matching</tt> and |
---|
50 | <tt>checked_edmonds_maximum_cardinality_matching</tt> find the |
---|
51 | maximum cardinality matching in any undirected graph. The matching is returned in a |
---|
52 | <tt>MateMap</tt>, which is a |
---|
53 | <a href="../../property_map/ReadWritePropertyMap.html">ReadWritePropertyMap</a> |
---|
54 | that maps vertices to vertices. In the mapping returned, each vertex is either mapped |
---|
55 | to the vertex it's matched to, or to <tt>graph_traits<Graph>::null_vertex()</tt> if it |
---|
56 | doesn't participate in the matching. If no <tt>VertexIndexMap</tt> is provided, both functions |
---|
57 | assume that the <tt>VertexIndexMap</tt> is provided as an internal graph property accessible |
---|
58 | by calling <tt>get(vertex_index,g)</tt>. The only difference between |
---|
59 | <tt>edmonds_maximum_cardinality_matching</tt> and |
---|
60 | <tt>checked_edmonds_maximum_cardinality_matching</tt> is that as a final step, |
---|
61 | the latter algorithm runs a simple verification on the matching computed and |
---|
62 | returns <tt>true</tt> if and only if the matching is indeed |
---|
63 | a maximum cardinality matching. |
---|
64 | |
---|
65 | <p> |
---|
66 | Given a matching M, any vertex that isn't covered by an edge in M is called <i>free</i>. Any |
---|
67 | simple path containing exactly <i>2n + 1</i> edges that starts and ends at free vertices and contains |
---|
68 | <i>n</i> edges from M is called an <i>alternating path</i>. Given an alternating path <i>p</i>, all matching and |
---|
69 | non-matching edges on <i>p</i> can be swapped, resulting in a new matching that's larger than the |
---|
70 | original matching by exactly one edge. This method of incrementally increasing the size of matching, along |
---|
71 | with the following fact, forms the basis of Edmonds' matching algorithm: |
---|
72 | |
---|
73 | <blockquote> |
---|
74 | <i>An alternating path through the matching M exists if and only if M is not a maximum cardinality matching.</i> |
---|
75 | </blockquote> |
---|
76 | |
---|
77 | The difficult part is, of course, finding an augmenting path whenever one exists. |
---|
78 | The algorithm we use for finding a maximum cardinality matching consists of three basic steps: |
---|
79 | <ol> |
---|
80 | <li>Create an initial matching. |
---|
81 | <li>Repeatedly find an augmenting path and use it to increase the size of the matching until no augmenting path exists. |
---|
82 | <li>Verify that the matching found is a maximum cardinality matching. |
---|
83 | </ol> |
---|
84 | |
---|
85 | If you use <tt>checked_edmonds_maximum_cardinality_matching</tt> or |
---|
86 | <tt>edmonds_maximum_cardinality_matching</tt>, all three of these |
---|
87 | steps are chosen for you, but it's easy to plug in different algorithms for these three steps |
---|
88 | using a generic matching function discussed below - in fact, both <tt>checked_edmonds_maximum_cardinality_matching</tt> |
---|
89 | and <tt>edmonds_maximum_cardinality_matching</tt> are just inlined specializations of this function. |
---|
90 | |
---|
91 | <p> |
---|
92 | When quoting time bounds for algorithms, we assume that <tt>VertexIndexMap</tt> is a property map |
---|
93 | that allows for constant-time mapping between vertices and indices (which is easily achieved if, |
---|
94 | for instance, the vertices are stored in contiguous memory.) We use <i>n</i> and <i>m</i> to represent the size |
---|
95 | of the vertex and edge sets, respectively, of the input graph. |
---|
96 | |
---|
97 | <h4>Algorithms for Creating an Initial Matching</h4> |
---|
98 | |
---|
99 | <ul> |
---|
100 | <li><b><tt>empty_matching</tt></b>: Takes time <i>O(n)</i> to initialize the empty matching. |
---|
101 | <li><b><tt>greedy_matching</tt></b>: The matching obtained by iterating through the edges and adding an edge |
---|
102 | if it doesn't conflict with the edges already in the matching. This matching is maximal, and is therefore |
---|
103 | guaranteed to contain at least half of the edges that a maximum matching has. Takes time <i>O(m log n)</i>. |
---|
104 | <li><b><tt>extra_greedy_matching</tt></b>: Sorts the edges in increasing order of the degree of the vertices |
---|
105 | contained in each edge, then constructs a greedy matching from those edges. Also a maximal matching, and can |
---|
106 | sometimes be much closer to the maximum cardinality matching than a simple <tt>greedy_matching</tt>. |
---|
107 | Takes time <i>O(m log n)</i>, but the constants involved make this a slower algorithm than |
---|
108 | <tt>greedy_matching</tt>. |
---|
109 | </ul> |
---|
110 | |
---|
111 | <h4>Algorithms for Finding an Augmenting Path</h4> |
---|
112 | |
---|
113 | <ul> |
---|
114 | <li><b><tt>edmonds_augmenting_path_finder</tt></b>: Finds an augmenting path in time <i>O(m alpha(m,n))</i>, |
---|
115 | where <i>alpha(m,n)</i> is an inverse of the Ackerman function. <i>alpha(m,n)</i> is one of the slowest |
---|
116 | growing functions that occurs naturally in computer science; essentially, <i>alpha(m,n)</i> ≤ 4 for any |
---|
117 | graph that we'd ever hope to run this algorithm on. Since we arrive at a maximum cardinality matching after |
---|
118 | augmenting <i>O(n)</i> matchings, the entire algorithm takes time <i>O(mn alpha(m,n))</i>. Edmonds' original |
---|
119 | algorithm appeared in [<a href="bibliography.html#edmonds65">64</a>], but our implementation of |
---|
120 | Edmonds' algorithm closely follows Tarjan's |
---|
121 | description of the algorithm from [<a href="bibliography.html#tarjan83:_data_struct_network_algo">27</a>]. |
---|
122 | <li><b><tt>no_augmenting_path_finder</tt></b>: Can be used if no augmentation of the initial matching is desired. |
---|
123 | </ul> |
---|
124 | |
---|
125 | <h4>Verification Algorithms</h4> |
---|
126 | |
---|
127 | <ul> |
---|
128 | <li><b><tt>maximum_cardinality_matching_verifier</tt></b>: Returns true if and only if the matching found is a |
---|
129 | maximum cardinality matching. Takes time <i>O(m alpha(m,n))</i>, which is on the order of a single iteration |
---|
130 | of Edmonds' algorithm. |
---|
131 | <li><b><tt>no_matching_verifier</tt></b>: Always returns true |
---|
132 | </ul> |
---|
133 | |
---|
134 | Why is a verification algorithm needed? Edmonds' algorithm is fairly complex, and it's nearly |
---|
135 | impossible for a human without a few days of spare time to figure out if the matching produced by |
---|
136 | <tt>edmonds_matching</tt> on a graph with, say, 100 vertices and 500 edges is indeed a maximum cardinality |
---|
137 | matching. A verification algorithm can do this mechanically, and it's much easier to verify by inspection |
---|
138 | that the verification algorithm has been implemented correctly than it is to verify by inspection that |
---|
139 | Edmonds' algorithm has been implemented correctly. |
---|
140 | The Boost Graph library makes it incredibly simple to perform the subroutines needed by the verifier |
---|
141 | (such as finding all the connected components of odd cardinality in a graph, or creating the induced graph |
---|
142 | on all vertices with a certain label) in just a few lines of code. |
---|
143 | |
---|
144 | <p> |
---|
145 | Understanding how the verifier works requires a few graph-theoretic facts. |
---|
146 | Let <i>m(G)</i> be the size of a maximum cardinality matching in the graph <i>G</i>. |
---|
147 | Denote by <i>o(G)</i> the number of connected components in <i>G</i> of odd cardinality, and for a set of |
---|
148 | vertices <i>X</i>, denote by <i>G - X</i> the induced graph on the vertex set <i>V(G) - X</i>. Then the |
---|
149 | Tutte-Berge Formula says that |
---|
150 | <blockquote> |
---|
151 | <i>2 * m(G) = min ( |V(G)| + |X| - o(G-X) )</i> |
---|
152 | </blockquote> |
---|
153 | Where the minimum is taken over all subsets <i>X</i> of the vertex set <i>V(G)</i>. A side effect of the |
---|
154 | Edmonds Blossom-Shrinking algorithm is that it computes what is known as the Edmonds-Gallai decomposition |
---|
155 | of a graph: it decomposes the graph into three disjoint sets of vertices, one of which achieves the minimum |
---|
156 | in the Tutte-Berge Formula. |
---|
157 | |
---|
158 | An outline of our verification procedure is: |
---|
159 | |
---|
160 | Given a <tt>Graph g</tt> and <tt>MateMap mate</tt>, |
---|
161 | <ol> |
---|
162 | <li>Check to make sure that <tt>mate</tt> is a valid matching on <tt>g</tt>. |
---|
163 | <li>Run <tt>edmonds_augmenting_path_finder</tt> once on <tt>g</tt> and <tt>mate</tt>. If it finds an augmenting |
---|
164 | path, the matching isn't a maximum cardinality matching. Otherwise, we retrieve a copy of the <tt>vertex_state</tt> |
---|
165 | map used by the <tt>edmonds_augmenting_path_finder</tt>. The Edmonds-Gallai decomposition tells us that the set |
---|
166 | of vertices labeled <tt>V_ODD</tt> by the <tt>vertex_state</tt> map can be used as the set X to achieve the |
---|
167 | minimum in the Tutte-Berge Formula. |
---|
168 | <li>Count the number of vertices labeled <tt>V_ODD</tt>, store this in <tt>num_odd_vertices</tt>. |
---|
169 | <li>Create a <a href="filtered_graph.html"><tt>filtered_graph</tt></a> |
---|
170 | consisting of all vertices that aren't labeled <tt>V_ODD</tt>. Count the number of odd connected components |
---|
171 | in this graph and store the result in <tt>num_odd_connected_components</tt>. |
---|
172 | <li>Test to see if equality holds in the Tutte-Berge formula using |X| = <tt>num_odd_vertices</tt> and o(G-X) = <tt>num_odd_connected_components</tt>. Return true if it holds, false otherwise. |
---|
173 | </ol> |
---|
174 | |
---|
175 | Assuming these steps are implemented correctly, the verifier will never return a false positive, |
---|
176 | and will only return a false negative if <tt>edmonds_augmenting_path_finder</tt> doesn't compute the |
---|
177 | <tt>vertex_state</tt> map correctly, in which case the <tt>edmonds_augmenting_path_finder</tt> |
---|
178 | isn't working correctly. |
---|
179 | |
---|
180 | |
---|
181 | <h4>Creating Your Own Matching Algorithms</h4> |
---|
182 | |
---|
183 | Creating a matching algorithm is as simple as plugging the algorithms described above into a generic |
---|
184 | matching function, which has the following signature: |
---|
185 | <pre> |
---|
186 | template <typename Graph, |
---|
187 | typename MateMap, |
---|
188 | typename VertexIndexMap, |
---|
189 | template <typename, typename, typename> class AugmentingPathFinder, |
---|
190 | template <typename, typename> class InitialMatchingFinder, |
---|
191 | template <typename, typename, typename> class MatchingVerifier> |
---|
192 | bool matching(const Graph& g, MateMap mate, VertexIndexMap vm) |
---|
193 | </pre> |
---|
194 | The matching functions provided for you are just inlined specializations of this function: |
---|
195 | <tt>edmonds_maximum_cardinality_matching</tt> uses <tt>edmonds_augmenting_path_finder</tt> |
---|
196 | as the <tt>AugmentingPathFinder</tt>, <tt>extra_greedy_matching</tt> as the <tt>InitialMatchingFinder</tt>, |
---|
197 | and <tt>no_matching_verifier</tt> as the <tt>MatchingVerifier</tt>. |
---|
198 | <tt>checked_edmonds_maximum_cardinality_matching</tt> uses the same parameters except that |
---|
199 | <tt>maximum_cardinality_matching_verifier</tt> is used for the <tt>MatchingVerifier</tt>. |
---|
200 | |
---|
201 | <p> |
---|
202 | These aren't necessarily the best choices for any situation - for example, it's been claimed in the literature |
---|
203 | that for sparse graphs, Edmonds' algorithm converges to the maximum cardinality matching more quickly if it |
---|
204 | isn't supplied with an intitial matching. Such an algorithm can be easily assembled by calling <tt>matching</tt> with |
---|
205 | <ul> |
---|
206 | <li><tt>AugmentingPathFinder = edmonds_augmenting_path_finder</tt> |
---|
207 | <li><tt>InitialMatchingFinder = empty_matching</tt> |
---|
208 | </ul> |
---|
209 | and choosing the <tt>MatchingVerifier</tt> depending on how careful you're feeling. |
---|
210 | |
---|
211 | <p> |
---|
212 | Suppose instead that you want a relatively large matching quickly, but are not exactly interested in a maximum matching. |
---|
213 | Both extra_greedy_matching and greedy_matching find maximal matchings, which means they're guaranteed to be at |
---|
214 | least half the size of a maximum cardinality matching, so you could call <tt>matching</tt> with |
---|
215 | <ul> |
---|
216 | <li><tt>AugmentingPathFinder = no_augmenting_path_finder</tt> |
---|
217 | <li><tt>InitialMatchingFinder = extra_greedy_matching</tt> |
---|
218 | <li><tt>MatchingVerifier = maximum_cardinality_matching_verifier</tt> |
---|
219 | </ul> |
---|
220 | The resulting algorithm will find an extra greedy matching in time <i>O(m log n)</i> without looking for |
---|
221 | augmenting paths. As a bonus, the return value of this function is true if and only if the extra greedy |
---|
222 | matching happens to be a maximum cardinality matching. |
---|
223 | |
---|
224 | </p><h3>Where Defined</h3> |
---|
225 | |
---|
226 | <p> |
---|
227 | <a href="../../../boost/graph/max_cardinality_matching.hpp"><tt>boost/graph/max_cardinality_matching.hpp</tt></a> |
---|
228 | |
---|
229 | |
---|
230 | </p><h3>Parameters</h3> |
---|
231 | |
---|
232 | IN: <tt>const Graph& g</tt> |
---|
233 | <blockquote> |
---|
234 | An undirected graph. The graph type must be a model of |
---|
235 | <a href="VertexAndEdgeListGraph.html">Vertex and Edge List Graph</a> and |
---|
236 | <a href="IncidenceGraph.html">Incidence Graph</a>.<br> |
---|
237 | </blockquote> |
---|
238 | |
---|
239 | IN: <tt>VertexIndexMap vm</tt> |
---|
240 | <blockquote> |
---|
241 | Must be a model of <a href="../../property_map/ReadablePropertyMap.html">ReadablePropertyMap</a>, mapping vertices to integer indices. |
---|
242 | </blockquote> |
---|
243 | |
---|
244 | OUT: <tt>MateMap mate</tt> |
---|
245 | <blockquote> |
---|
246 | Must be a model of <a href="../../property_map/ReadWritePropertyMap.html">ReadWritePropertyMap</a>, mapping |
---|
247 | vertices to vertices. For any vertex v in the graph, <tt>get(mate,v)</tt> will be the vertex that v is matched to, or |
---|
248 | <tt>graph_traits<Graph>::null_vertex()</tt> if v isn't matched. |
---|
249 | </blockquote> |
---|
250 | |
---|
251 | <h3>Complexity</h3> |
---|
252 | |
---|
253 | <p> |
---|
254 | Let <i>m</i> and <i>n</i> be the number of edges and vertices in the input graph, respectively. Assuming the |
---|
255 | <tt>VertexIndexMap</tt> supplied allows constant-time lookups, the time complexity for both |
---|
256 | <tt>edmonds_matching</tt> and <tt>checked_edmonds_matching</tt> is <i>O(mn alpha(m,n))</i>. |
---|
257 | <i>alpha(m,n)</i> is a slow growing function that is at most 4 for any feasible input. |
---|
258 | </p><p> |
---|
259 | |
---|
260 | </p><h3>Example</h3> |
---|
261 | |
---|
262 | <p> The file <a href="../example/matching_example.cpp"><tt>example/matching_example.cpp</tt></a> |
---|
263 | contains an example. |
---|
264 | |
---|
265 | <br> |
---|
266 | </p><hr> |
---|
267 | <table> |
---|
268 | <tbody><tr valign="top"> |
---|
269 | <td nowrap="nowrap">Copyright © 2005</td><td> |
---|
270 | Aaron Windsor (<a href="mailto:aaron.windsor@gmail.com">aaron.windsor@gmail.com</a>)<br> |
---|
271 | </td></tr></tbody></table> |
---|
272 | |
---|
273 | </body></html> |
---|