1 | \documentclass[11pt]{report} |
---|
2 | |
---|
3 | \input{defs} |
---|
4 | |
---|
5 | |
---|
6 | \setlength\overfullrule{5pt} |
---|
7 | \tolerance=10000 |
---|
8 | \sloppy |
---|
9 | \hfuzz=10pt |
---|
10 | |
---|
11 | \makeindex |
---|
12 | |
---|
13 | \begin{document} |
---|
14 | |
---|
15 | \title{A Generic Programming Implementation of Transitive Closure} |
---|
16 | \author{Jeremy G. Siek} |
---|
17 | |
---|
18 | \maketitle |
---|
19 | |
---|
20 | \section{Introduction} |
---|
21 | |
---|
22 | This paper documents the implementation of the |
---|
23 | \code{transitive\_closure()} function of the Boost Graph Library. The |
---|
24 | function was implemented by Vladimir Prus and some editing was done by |
---|
25 | Jeremy Siek. |
---|
26 | |
---|
27 | The algorithm used to implement the \code{transitive\_closure()} |
---|
28 | function is based on the detection of strong components |
---|
29 | \cite{nuutila95, purdom70}. The following discussion describes the |
---|
30 | main ideas of the algorithm and some relevant background theory. |
---|
31 | |
---|
32 | The \keyword{transitive closure} of a graph $G = (V,E)$ is a graph $G^+ |
---|
33 | = (V,E^+)$ such that $E^+$ contains an edge $(u,v)$ if and only if $G$ |
---|
34 | contains a path (of at least one edge) from $u$ to $v$. A |
---|
35 | \keyword{successor set} of a vertex $v$, denoted by $Succ(v)$, is the |
---|
36 | set of vertices that are reachable from vertex $v$. The set of |
---|
37 | vertices adjacent to $v$ in the transitive closure $G^+$ is the same as |
---|
38 | the successor set of $v$ in the original graph $G$. Computing the |
---|
39 | transitive closure is equivalent to computing the successor set for |
---|
40 | every vertex in $G$. |
---|
41 | |
---|
42 | All vertices in the same strong component have the same successor set |
---|
43 | (because every vertex is reachable from all the other vertices in the |
---|
44 | component). Therefore, it is redundant to compute the successor set |
---|
45 | for every vertex in a strong component; it suffices to compute it for |
---|
46 | just one vertex per component. |
---|
47 | |
---|
48 | A \keyword{condensation graph} is a a graph $G'=(V',E')$ based on the |
---|
49 | graph $G=(V,E)$ where each vertex in $V'$ corresponds to a strongly |
---|
50 | connected component in $G$ and the edge $(s,t)$ is in $E'$ if and only |
---|
51 | if there exists an edge in $E$ connecting any of the vertices in the |
---|
52 | component of $s$ to any of the vertices in the component of $t$. |
---|
53 | |
---|
54 | \section{The Implementation} |
---|
55 | |
---|
56 | The following is the interface and outline of the function: |
---|
57 | |
---|
58 | @d Transitive Closure Function |
---|
59 | @{ |
---|
60 | template <typename Graph, typename GraphTC, |
---|
61 | typename G_to_TC_VertexMap, |
---|
62 | typename VertexIndexMap> |
---|
63 | void transitive_closure(const Graph& g, GraphTC& tc, |
---|
64 | G_to_TC_VertexMap g_to_tc_map, |
---|
65 | VertexIndexMap index_map) |
---|
66 | { |
---|
67 | if (num_vertices(g) == 0) return; |
---|
68 | @<Some type definitions@> |
---|
69 | @<Concept checking@> |
---|
70 | @<Compute strongly connected components of the graph@> |
---|
71 | @<Construct the condensation graph (version 2)@> |
---|
72 | @<Compute transitive closure on the condensation graph@> |
---|
73 | @<Build transitive closure of the original graph@> |
---|
74 | } |
---|
75 | @} |
---|
76 | |
---|
77 | The parameter \code{g} is the input graph and the parameter \code{tc} |
---|
78 | is the output graph that will contain the transitive closure of |
---|
79 | \code{g}. The \code{g\_to\_tc\_map} maps vertices in the input graph |
---|
80 | to the new vertices in the output transitive closure. The |
---|
81 | \code{index\_map} maps vertices in the input graph to the integers |
---|
82 | zero to \code{num\_vertices(g) - 1}. |
---|
83 | |
---|
84 | There are two alternate interfaces for the transitive closure |
---|
85 | function. The following is the version where defaults are used for |
---|
86 | both the \code{g\_to\_tc\_map} and the \code{index\_map}. |
---|
87 | |
---|
88 | @d The All Defaults Interface |
---|
89 | @{ |
---|
90 | template <typename Graph, typename GraphTC> |
---|
91 | void transitive_closure(const Graph& g, GraphTC& tc) |
---|
92 | { |
---|
93 | if (num_vertices(g) == 0) return; |
---|
94 | typedef typename property_map<Graph, vertex_index_t>::const_type |
---|
95 | VertexIndexMap; |
---|
96 | VertexIndexMap index_map = get(vertex_index, g); |
---|
97 | |
---|
98 | typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex; |
---|
99 | std::vector<tc_vertex> to_tc_vec(num_vertices(g)); |
---|
100 | iterator_property_map<tc_vertex*, VertexIndexMap> |
---|
101 | g_to_tc_map(&to_tc_vec[0], index_map); |
---|
102 | |
---|
103 | transitive_closure(g, tc, g_to_tc_map, index_map); |
---|
104 | } |
---|
105 | @} |
---|
106 | |
---|
107 | \noindent The following alternate interface uses the named parameter |
---|
108 | trick for specifying the parameters. The named parameter functions to |
---|
109 | use in creating the \code{params} argument are |
---|
110 | \code{vertex\_index(VertexIndexMap index\_map)} and |
---|
111 | \code{orig\_to\_copy(G\_to\_TC\_VertexMap g\_to\_tc\_map)}. |
---|
112 | |
---|
113 | @d The Named Parameter Interface |
---|
114 | @{ |
---|
115 | template <typename Graph, typename GraphTC, |
---|
116 | typename P, typename T, typename R> |
---|
117 | void transitive_closure(const Graph& g, GraphTC& tc, |
---|
118 | const bgl_named_params<P, T, R>& params) |
---|
119 | { |
---|
120 | if (num_vertices(g) == 0) return; |
---|
121 | detail::transitive_closure_dispatch(g, tc, |
---|
122 | get_param(params, orig_to_copy), |
---|
123 | choose_const_pmap(get_param(params, vertex_index), g, vertex_index) |
---|
124 | ); |
---|
125 | } |
---|
126 | @} |
---|
127 | |
---|
128 | \noindent This dispatch function is used to handle the logic for |
---|
129 | deciding between a user-provided graph to transitive closure vertex |
---|
130 | mapping or to use the default, a vector, to map between the two. |
---|
131 | |
---|
132 | @d Construct Default G to TC Vertex Mapping |
---|
133 | @{ |
---|
134 | namespace detail { |
---|
135 | template <typename Graph, typename GraphTC, |
---|
136 | typename G_to_TC_VertexMap, |
---|
137 | typename VertexIndexMap> |
---|
138 | void transitive_closure_dispatch |
---|
139 | (const Graph& g, GraphTC& tc, |
---|
140 | G_to_TC_VertexMap g_to_tc_map, |
---|
141 | VertexIndexMap index_map) |
---|
142 | { |
---|
143 | typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex; |
---|
144 | typename std::vector<tc_vertex>::size_type |
---|
145 | n = is_default_param(g_to_tc_map) ? num_vertices(g) : 1; |
---|
146 | std::vector<tc_vertex> to_tc_vec(n); |
---|
147 | |
---|
148 | transitive_closure |
---|
149 | (g, tc, |
---|
150 | choose_param(g_to_tc_map, make_iterator_property_map |
---|
151 | (to_tc_vec.begin(), index_map, to_tc_vec[0])), |
---|
152 | index_map); |
---|
153 | } |
---|
154 | } // namespace detail |
---|
155 | @} |
---|
156 | |
---|
157 | The following statements check to make sure that the template |
---|
158 | parameters \emph{model} the concepts that are required for this |
---|
159 | algorithm. |
---|
160 | |
---|
161 | @d Concept checking |
---|
162 | @{ |
---|
163 | function_requires< VertexListGraphConcept<Graph> >(); |
---|
164 | function_requires< AdjacencyGraphConcept<Graph> >(); |
---|
165 | function_requires< VertexMutableGraphConcept<GraphTC> >(); |
---|
166 | function_requires< EdgeMutableGraphConcept<GraphTC> >(); |
---|
167 | function_requires< ReadablePropertyMapConcept<VertexIndexMap, vertex> >(); |
---|
168 | @} |
---|
169 | |
---|
170 | \noindent To simplify the code in the rest of the function we make the |
---|
171 | following typedefs. |
---|
172 | |
---|
173 | @d Some type definitions |
---|
174 | @{ |
---|
175 | typedef typename graph_traits<Graph>::vertex_descriptor vertex; |
---|
176 | typedef typename graph_traits<Graph>::edge_descriptor edge; |
---|
177 | typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator; |
---|
178 | typedef typename property_traits<VertexIndexMap>::value_type size_type; |
---|
179 | typedef typename graph_traits<Graph>::adjacency_iterator adjacency_iterator; |
---|
180 | @} |
---|
181 | |
---|
182 | The first step of the algorithm is to compute which vertices are in |
---|
183 | each strongly connected component (SCC) of the graph. This is done |
---|
184 | with the \code{strong\_components()} function. The result of this |
---|
185 | function is stored in the \code{component\_number} array which maps |
---|
186 | each vertex to the number of the SCC to which it belongs (the |
---|
187 | components are numbered zero through \code{num\_scc}). We will use |
---|
188 | the SCC numbers for vertices in the condensation graph (CG), so we use |
---|
189 | the same integer type \code{cg\_vertex} for both. |
---|
190 | |
---|
191 | @d Compute strongly connected components of the graph |
---|
192 | @{ |
---|
193 | typedef size_type cg_vertex; |
---|
194 | std::vector<cg_vertex> component_number_vec(num_vertices(g)); |
---|
195 | iterator_property_map<cg_vertex*, VertexIndexMap> |
---|
196 | component_number(&component_number_vec[0], index_map); |
---|
197 | |
---|
198 | int num_scc = strong_components(g, component_number, |
---|
199 | vertex_index_map(index_map)); |
---|
200 | |
---|
201 | std::vector< std::vector<vertex> > components; |
---|
202 | build_component_lists(g, num_scc, component_number, components); |
---|
203 | @} |
---|
204 | |
---|
205 | \noindent Later we will need efficient access to all vertices in the |
---|
206 | same SCC so we create a \code{std::vector} of vertices for each SCC |
---|
207 | and fill it in with the \code{build\_components\_lists()} function |
---|
208 | from \code{strong\_components.hpp}. |
---|
209 | |
---|
210 | The next step is to construct the condensation graph. There will be |
---|
211 | one vertex in the CG for every strongly connected component in the |
---|
212 | original graph. We will add an edge to the CG whenever there is one or |
---|
213 | more edges in the original graph that has its source in one SCC and |
---|
214 | its target in another SCC. The data structure we will use for the CG |
---|
215 | is an adjacency-list with a \code{std::set} for each out-edge list. We |
---|
216 | use \code{std::set} because it will automatically discard parallel |
---|
217 | edges. This makes the code simpler since we can just call |
---|
218 | \code{insert()} every time there is an edge connecting two SCCs in the |
---|
219 | original graph. |
---|
220 | |
---|
221 | @d Construct the condensation graph (version 1) |
---|
222 | @{ |
---|
223 | typedef std::vector< std::set<cg_vertex> > CG_t; |
---|
224 | CG_t CG(num_scc); |
---|
225 | for (cg_vertex s = 0; s < components.size(); ++s) { |
---|
226 | for (size_type i = 0; i < components[s].size(); ++i) { |
---|
227 | vertex u = components[s][i]; |
---|
228 | adjacency_iterator vi, vi_end; |
---|
229 | for (tie(vi, vi_end) = adjacent_vertices(u, g); vi != vi_end; ++vi) { |
---|
230 | cg_vertex t = component_number[*vi]; |
---|
231 | if (s != t) // Avoid loops in the condensation graph |
---|
232 | CG[s].insert(t); // add edge (s,t) to the condensation graph |
---|
233 | } |
---|
234 | } |
---|
235 | } |
---|
236 | @} |
---|
237 | |
---|
238 | Inserting into a \code{std::set} and iterator traversal for |
---|
239 | \code{std::set} is a bit slow. We can get better performance if we use |
---|
240 | \code{std::vector} and then explicitly remove duplicated vertices from |
---|
241 | the out-edge lists. Here is the construction of the condensation graph |
---|
242 | rewritten to use \code{std::vector}. |
---|
243 | |
---|
244 | @d Construct the condensation graph (version 2) |
---|
245 | @{ |
---|
246 | typedef std::vector< std::vector<cg_vertex> > CG_t; |
---|
247 | CG_t CG(num_scc); |
---|
248 | for (cg_vertex s = 0; s < components.size(); ++s) { |
---|
249 | std::vector<cg_vertex> adj; |
---|
250 | for (size_type i = 0; i < components[s].size(); ++i) { |
---|
251 | vertex u = components[s][i]; |
---|
252 | adjacency_iterator v, v_end; |
---|
253 | for (tie(v, v_end) = adjacent_vertices(u, g); v != v_end; ++v) { |
---|
254 | cg_vertex t = component_number[*v]; |
---|
255 | if (s != t) // Avoid loops in the condensation graph |
---|
256 | adj.push_back(t); |
---|
257 | } |
---|
258 | } |
---|
259 | std::sort(adj.begin(), adj.end()); |
---|
260 | std::vector<cg_vertex>::iterator di = std::unique(adj.begin(), adj.end()); |
---|
261 | if (di != adj.end()) |
---|
262 | adj.erase(di, adj.end()); |
---|
263 | CG[s] = adj; |
---|
264 | } |
---|
265 | @} |
---|
266 | |
---|
267 | Next we compute the transitive closure of the condensation graph. The |
---|
268 | basic outline of the algorithm is below. The vertices are considered |
---|
269 | in reverse topological order to ensure that the when computing the |
---|
270 | successor set for a vertex $u$, the successor set for each vertex in |
---|
271 | $Adj[u]$ has already been computed. The successor set for a vertex $u$ |
---|
272 | can then be constructed by taking the union of the successor sets for |
---|
273 | all of its adjacent vertices together with the adjacent vertices |
---|
274 | themselves. |
---|
275 | |
---|
276 | \begin{tabbing} |
---|
277 | \textbf{for} \= ea\=ch \= vertex $u$ in $G'$ in reverse topological order \\ |
---|
278 | \>\textbf{for} each vertex $v$ in $Adj[u]$ \\ |
---|
279 | \>\>if ($v \notin Succ(u)$) \\ |
---|
280 | \>\>\>$Succ(u)$ := $Succ(u) \cup \{ v \} \cup Succ(v)$ |
---|
281 | \end{tabbing} |
---|
282 | |
---|
283 | An optimized implementation of the set union operation improves the |
---|
284 | performance of the algorithm. Therefore this implementation uses |
---|
285 | \keyword{chain decomposition}\cite{goral79,simon86}. The vertices of |
---|
286 | $G$ are partitioned into chains $Z_1, ..., Z_k$, where each chain |
---|
287 | $Z_i$ is a path in $G$ and the vertices in a chain have increasing |
---|
288 | topological number. A successor set $S$ is then represented by a |
---|
289 | collection of intersections with the chains, i.e., $S = |
---|
290 | \bigcup_{i=1 \ldots k} (Z_i \cap S)$. Each intersection can be represented |
---|
291 | by the first vertex in the path $Z_i$ that is also in $S$, since the |
---|
292 | rest of the path is guaranteed to also be in $S$. The collection of |
---|
293 | intersections is therefore represented by a vector of length $k$ where |
---|
294 | the $i$th element of the vector stores the first vertex in the |
---|
295 | intersection of $S$ with $Z_i$. |
---|
296 | |
---|
297 | Computing the union of two successor sets, $S_3 = S_1 \cup S_2$, can |
---|
298 | then be computed in $O(k)$ time with the below operation. We will |
---|
299 | represent the successor sets by vectors of integers where the integers |
---|
300 | are the topological numbers for the vertices in the set. |
---|
301 | |
---|
302 | @d Union of successor sets |
---|
303 | @{ |
---|
304 | namespace detail { |
---|
305 | inline void |
---|
306 | union_successor_sets(const std::vector<std::size_t>& s1, |
---|
307 | const std::vector<std::size_t>& s2, |
---|
308 | std::vector<std::size_t>& s3) |
---|
309 | { |
---|
310 | for (std::size_t k = 0; k < s1.size(); ++k) |
---|
311 | s3[k] = std::min(s1[k], s2[k]); |
---|
312 | } |
---|
313 | } // namespace detail |
---|
314 | @} |
---|
315 | |
---|
316 | So to compute the transitive closure we must first sort the graph by |
---|
317 | topological number and then decompose the graph into chains. Once |
---|
318 | that is accomplished we can enter the main loop and begin computing |
---|
319 | the successor sets. |
---|
320 | |
---|
321 | @d Compute transitive closure on the condensation graph |
---|
322 | @{ |
---|
323 | @<Compute topological number for each vertex@> |
---|
324 | @<Sort the out-edge lists by topological number@> |
---|
325 | @<Decompose the condensation graph into chains@> |
---|
326 | @<Compute successor sets@> |
---|
327 | @<Build the transitive closure of the condensation graph@> |
---|
328 | @} |
---|
329 | |
---|
330 | The \code{topological\_sort()} function is called to obtain a list of |
---|
331 | vertices in topological order and then we use this ordering to assign |
---|
332 | topological numbers to the vertices. |
---|
333 | |
---|
334 | @d Compute topological number for each vertex |
---|
335 | @{ |
---|
336 | std::vector<cg_vertex> topo_order; |
---|
337 | std::vector<cg_vertex> topo_number(num_vertices(CG)); |
---|
338 | topological_sort(CG, std::back_inserter(topo_order), |
---|
339 | vertex_index_map(identity_property_map())); |
---|
340 | std::reverse(topo_order.begin(), topo_order.end()); |
---|
341 | size_type n = 0; |
---|
342 | for (std::vector<cg_vertex>::iterator i = topo_order.begin(); |
---|
343 | i != topo_order.end(); ++i) |
---|
344 | topo_number[*i] = n++; |
---|
345 | @} |
---|
346 | |
---|
347 | Next we sort the out-edge lists of the condensation graph by |
---|
348 | topological number. This is needed for computing the chain |
---|
349 | decomposition, for each the vertices in a chain must be in topological |
---|
350 | order and we will be adding vertices to the chains from the out-edge |
---|
351 | lists. The \code{subscript()} function creates a function object that |
---|
352 | returns the topological number of its input argument. |
---|
353 | |
---|
354 | @d Sort the out-edge lists by topological number |
---|
355 | @{ |
---|
356 | for (size_type i = 0; i < num_vertices(CG); ++i) |
---|
357 | std::sort(CG[i].begin(), CG[i].end(), |
---|
358 | compose_f_gx_hy(std::less<cg_vertex>(), |
---|
359 | detail::subscript(topo_number), |
---|
360 | detail::subscript(topo_number))); |
---|
361 | @} |
---|
362 | |
---|
363 | Here is the code that defines the \code{subscript\_t} function object |
---|
364 | and its associated helper object generation function. |
---|
365 | |
---|
366 | @d Subscript function object |
---|
367 | @{ |
---|
368 | namespace detail { |
---|
369 | template <typename Container, typename ST = std::size_t, |
---|
370 | typename VT = typename Container::value_type> |
---|
371 | struct subscript_t : public std::unary_function<ST, VT> { |
---|
372 | subscript_t(Container& c) : container(&c) { } |
---|
373 | VT& operator()(const ST& i) const { return (*container)[i]; } |
---|
374 | protected: |
---|
375 | Container *container; |
---|
376 | }; |
---|
377 | template <typename Container> |
---|
378 | subscript_t<Container> subscript(Container& c) |
---|
379 | { return subscript_t<Container>(c); } |
---|
380 | } // namespace detail |
---|
381 | @} |
---|
382 | |
---|
383 | |
---|
384 | Now we are ready to decompose the condensation graph into chains. The |
---|
385 | idea is that we want to form lists of vertices that are in a path and |
---|
386 | that the vertices in the list should be ordered by topological number. |
---|
387 | These lists will be stored in the \code{chains} vector below. To |
---|
388 | create the chains we consider each vertex in the graph in topological |
---|
389 | order. If the vertex is not already in a chain then it will be the |
---|
390 | start of a new chain. We then follow a path from this vertex to extend |
---|
391 | the chain. |
---|
392 | |
---|
393 | @d Decompose the condensation graph into chains |
---|
394 | @{ |
---|
395 | std::vector< std::vector<cg_vertex> > chains; |
---|
396 | { |
---|
397 | std::vector<cg_vertex> in_a_chain(num_vertices(CG)); |
---|
398 | for (std::vector<cg_vertex>::iterator i = topo_order.begin(); |
---|
399 | i != topo_order.end(); ++i) { |
---|
400 | cg_vertex v = *i; |
---|
401 | if (!in_a_chain[v]) { |
---|
402 | chains.resize(chains.size() + 1); |
---|
403 | std::vector<cg_vertex>& chain = chains.back(); |
---|
404 | for (;;) { |
---|
405 | @<Extend the chain until the path dead-ends@> |
---|
406 | } |
---|
407 | } |
---|
408 | } |
---|
409 | } |
---|
410 | @<Record the chain number and chain position for each vertex@> |
---|
411 | @} |
---|
412 | |
---|
413 | \noindent To extend the chain we pick an adjacent vertex that is not |
---|
414 | already in a chain. Also, the adjacent vertex chosen will be the one |
---|
415 | with lowest topological number since the out-edges of \code{CG} are in |
---|
416 | topological order. |
---|
417 | |
---|
418 | @d Extend the chain until the path dead-ends |
---|
419 | @{ |
---|
420 | chain.push_back(v); |
---|
421 | in_a_chain[v] = true; |
---|
422 | graph_traits<CG_t>::adjacency_iterator adj_first, adj_last; |
---|
423 | tie(adj_first, adj_last) = adjacent_vertices(v, CG); |
---|
424 | graph_traits<CG_t>::adjacency_iterator next |
---|
425 | = std::find_if(adj_first, adj_last, not1(detail::subscript(in_a_chain))); |
---|
426 | if (next != adj_last) |
---|
427 | v = *next; |
---|
428 | else |
---|
429 | break; // end of chain, dead-end |
---|
430 | @} |
---|
431 | |
---|
432 | In the next steps of the algorithm we will need to efficiently find |
---|
433 | the chain for a vertex and the position in the chain for a vertex, so |
---|
434 | here we compute this information and store it in two vectors: |
---|
435 | \code{chain\_number} and \code{pos\_in\_chain}. |
---|
436 | |
---|
437 | @d Record the chain number and chain position for each vertex |
---|
438 | @{ |
---|
439 | std::vector<size_type> chain_number(num_vertices(CG)); |
---|
440 | std::vector<size_type> pos_in_chain(num_vertices(CG)); |
---|
441 | for (size_type i = 0; i < chains.size(); ++i) |
---|
442 | for (size_type j = 0; j < chains[i].size(); ++j) { |
---|
443 | cg_vertex v = chains[i][j]; |
---|
444 | chain_number[v] = i; |
---|
445 | pos_in_chain[v] = j; |
---|
446 | } |
---|
447 | @} |
---|
448 | |
---|
449 | Now that we have completed the chain decomposition we are ready to |
---|
450 | write the main loop for computing the transitive closure of the |
---|
451 | condensation graph. The output of this will be a successor set for |
---|
452 | each vertex. Remember that the successor set is stored as a collection |
---|
453 | of intersections with the chains. Each successor set is represented by |
---|
454 | a vector where the $i$th element is the representative vertex for the |
---|
455 | intersection of the set with the $i$th chain. We compute the successor |
---|
456 | sets for every vertex in decreasing topological order. The successor |
---|
457 | set for each vertex is the union of the successor sets of the adjacent |
---|
458 | vertex plus the adjacent vertices themselves. |
---|
459 | |
---|
460 | @d Compute successor sets |
---|
461 | @{ |
---|
462 | cg_vertex inf = std::numeric_limits<cg_vertex>::max(); |
---|
463 | std::vector< std::vector<cg_vertex> > successors(num_vertices(CG), |
---|
464 | std::vector<cg_vertex>(chains.size(), inf)); |
---|
465 | for (std::vector<cg_vertex>::reverse_iterator i = topo_order.rbegin(); |
---|
466 | i != topo_order.rend(); ++i) { |
---|
467 | cg_vertex u = *i; |
---|
468 | graph_traits<CG_t>::adjacency_iterator adj, adj_last; |
---|
469 | for (tie(adj, adj_last) = adjacent_vertices(u, CG); |
---|
470 | adj != adj_last; ++adj) { |
---|
471 | cg_vertex v = *adj; |
---|
472 | if (topo_number[v] < successors[u][chain_number[v]]) { |
---|
473 | // Succ(u) = Succ(u) U Succ(v) |
---|
474 | detail::union_successor_sets(successors[u], successors[v], |
---|
475 | successors[u]); |
---|
476 | // Succ(u) = Succ(u) U {v} |
---|
477 | successors[u][chain_number[v]] = topo_number[v]; |
---|
478 | } |
---|
479 | } |
---|
480 | } |
---|
481 | @} |
---|
482 | |
---|
483 | We now rebuild the condensation graph, adding in edges to connect each |
---|
484 | vertex to every vertex in its successor set, thereby obtaining the |
---|
485 | transitive closure. The successor set vectors contain topological |
---|
486 | numbers, so we map back to vertices using the \code{topo\_order} |
---|
487 | vector. |
---|
488 | |
---|
489 | @d Build the transitive closure of the condensation graph |
---|
490 | @{ |
---|
491 | for (size_type i = 0; i < CG.size(); ++i) |
---|
492 | CG[i].clear(); |
---|
493 | for (size_type i = 0; i < CG.size(); ++i) |
---|
494 | for (size_type j = 0; j < chains.size(); ++j) { |
---|
495 | size_type topo_num = successors[i][j]; |
---|
496 | if (topo_num < inf) { |
---|
497 | cg_vertex v = topo_order[topo_num]; |
---|
498 | for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k) |
---|
499 | CG[i].push_back(chains[j][k]); |
---|
500 | } |
---|
501 | } |
---|
502 | @} |
---|
503 | |
---|
504 | The last stage is to create the transitive closure graph $G^+$ based on |
---|
505 | the transitive closure of the condensation graph $G'^+$. We do this in |
---|
506 | two steps. First we add edges between all the vertices in one SCC to |
---|
507 | all the vertices in another SCC when the two SCCs are adjacent in the |
---|
508 | condensation graph. Second we add edges to connect each vertex in a |
---|
509 | SCC to every other vertex in the SCC. |
---|
510 | |
---|
511 | @d Build transitive closure of the original graph |
---|
512 | @{ |
---|
513 | // Add vertices to the transitive closure graph |
---|
514 | typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex; |
---|
515 | { |
---|
516 | vertex_iterator i, i_end; |
---|
517 | for (tie(i, i_end) = vertices(g); i != i_end; ++i) |
---|
518 | g_to_tc_map[*i] = add_vertex(tc); |
---|
519 | } |
---|
520 | // Add edges between all the vertices in two adjacent SCCs |
---|
521 | graph_traits<CG_t>::vertex_iterator si, si_end; |
---|
522 | for (tie(si, si_end) = vertices(CG); si != si_end; ++si) { |
---|
523 | cg_vertex s = *si; |
---|
524 | graph_traits<CG_t>::adjacency_iterator i, i_end; |
---|
525 | for (tie(i, i_end) = adjacent_vertices(s, CG); i != i_end; ++i) { |
---|
526 | cg_vertex t = *i; |
---|
527 | for (size_type k = 0; k < components[s].size(); ++k) |
---|
528 | for (size_type l = 0; l < components[t].size(); ++l) |
---|
529 | add_edge(g_to_tc_map[components[s][k]], |
---|
530 | g_to_tc_map[components[t][l]], tc); |
---|
531 | } |
---|
532 | } |
---|
533 | // Add edges connecting all vertices in a SCC |
---|
534 | for (size_type i = 0; i < components.size(); ++i) |
---|
535 | if (components[i].size() > 1) |
---|
536 | for (size_type k = 0; k < components[i].size(); ++k) |
---|
537 | for (size_type l = 0; l < components[i].size(); ++l) { |
---|
538 | vertex u = components[i][k], v = components[i][l]; |
---|
539 | add_edge(g_to_tc_map[u], g_to_tc_map[v], tc); |
---|
540 | } |
---|
541 | |
---|
542 | // Find loopbacks in the original graph. |
---|
543 | // Need to add it to transitive closure. |
---|
544 | { |
---|
545 | vertex_iterator i, i_end; |
---|
546 | for (tie(i, i_end) = vertices(g); i != i_end; ++i) |
---|
547 | { |
---|
548 | adjacency_iterator ab, ae; |
---|
549 | for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab) |
---|
550 | { |
---|
551 | if (*ab == *i) |
---|
552 | if (components[component_number[*i]].size() == 1) |
---|
553 | add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc); |
---|
554 | } |
---|
555 | } |
---|
556 | } |
---|
557 | @} |
---|
558 | |
---|
559 | \section{Appendix} |
---|
560 | |
---|
561 | @d Warshall Transitive Closure |
---|
562 | @{ |
---|
563 | template <typename G> |
---|
564 | void warshall_transitive_closure(G& g) |
---|
565 | { |
---|
566 | typedef typename graph_traits<G>::vertex_descriptor vertex; |
---|
567 | typedef typename graph_traits<G>::vertex_iterator vertex_iterator; |
---|
568 | |
---|
569 | function_requires< AdjacencyMatrixConcept<G> >(); |
---|
570 | function_requires< EdgeMutableGraphConcept<G> >(); |
---|
571 | |
---|
572 | // Matrix form: |
---|
573 | // for k |
---|
574 | // for i |
---|
575 | // if A[i,k] |
---|
576 | // for j |
---|
577 | // A[i,j] = A[i,j] | A[k,j] |
---|
578 | vertex_iterator ki, ke, ii, ie, ji, je; |
---|
579 | for (tie(ki, ke) = vertices(g); ki != ke; ++ki) |
---|
580 | for (tie(ii, ie) = vertices(g); ii != ie; ++ii) |
---|
581 | if (edge(*ii, *ki, g).second) |
---|
582 | for (tie(ji, je) = vertices(g); ji != je; ++ji) |
---|
583 | if (!edge(*ii, *ji, g).second && |
---|
584 | edge(*ki, *ji, g).second) |
---|
585 | { |
---|
586 | add_edge(*ii, *ji, g); |
---|
587 | } |
---|
588 | } |
---|
589 | @} |
---|
590 | |
---|
591 | @d Warren Transitive Closure |
---|
592 | @{ |
---|
593 | template <typename G> |
---|
594 | void warren_transitive_closure(G& g) |
---|
595 | { |
---|
596 | using namespace boost; |
---|
597 | typedef typename graph_traits<G>::vertex_descriptor vertex; |
---|
598 | typedef typename graph_traits<G>::vertex_iterator vertex_iterator; |
---|
599 | |
---|
600 | function_requires< AdjacencyMatrixConcept<G> >(); |
---|
601 | function_requires< EdgeMutableGraphConcept<G> >(); |
---|
602 | |
---|
603 | // Make sure second loop will work |
---|
604 | if (num_vertices(g) == 0) |
---|
605 | return; |
---|
606 | |
---|
607 | // for i = 2 to n |
---|
608 | // for k = 1 to i - 1 |
---|
609 | // if A[i,k] |
---|
610 | // for j = 1 to n |
---|
611 | // A[i,j] = A[i,j] | A[k,j] |
---|
612 | |
---|
613 | vertex_iterator ic, ie, jc, je, kc, ke; |
---|
614 | for (tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic) |
---|
615 | for (tie(kc, ke) = vertices(g); *kc != *ic; ++kc) |
---|
616 | if (edge(*ic, *kc, g).second) |
---|
617 | for (tie(jc, je) = vertices(g); jc != je; ++jc) |
---|
618 | if (!edge(*ic, *jc, g).second && |
---|
619 | edge(*kc, *jc, g).second) |
---|
620 | { |
---|
621 | add_edge(*ic, *jc, g); |
---|
622 | } |
---|
623 | |
---|
624 | // for i = 1 to n - 1 |
---|
625 | // for k = i + 1 to n |
---|
626 | // if A[i,k] |
---|
627 | // for j = 1 to n |
---|
628 | // A[i,j] = A[i,j] | A[k,j] |
---|
629 | |
---|
630 | for (tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic) |
---|
631 | for (kc = ic, ke = ie, ++kc; kc != ke; ++kc) |
---|
632 | if (edge(*ic, *kc, g).second) |
---|
633 | for (tie(jc, je) = vertices(g); jc != je; ++jc) |
---|
634 | if (!edge(*ic, *jc, g).second && |
---|
635 | edge(*kc, *jc, g).second) |
---|
636 | { |
---|
637 | add_edge(*ic, *jc, g); |
---|
638 | } |
---|
639 | } |
---|
640 | @} |
---|
641 | |
---|
642 | |
---|
643 | The following indent command was run on the output files before |
---|
644 | they were checked into the Boost CVS repository. |
---|
645 | |
---|
646 | @e indentation |
---|
647 | @{ |
---|
648 | indent -nut -npcs -i2 -br -cdw -ce transitive_closure.hpp |
---|
649 | @} |
---|
650 | |
---|
651 | @o transitive_closure.hpp |
---|
652 | @{ |
---|
653 | // Copyright (C) 2001 Vladimir Prus <ghost@@cs.msu.su> |
---|
654 | // Copyright (C) 2001 Jeremy Siek <jsiek@@cs.indiana.edu> |
---|
655 | // Permission to copy, use, modify, sell and distribute this software is |
---|
656 | // granted, provided this copyright notice appears in all copies and |
---|
657 | // modified version are clearly marked as such. This software is provided |
---|
658 | // "as is" without express or implied warranty, and with no claim as to its |
---|
659 | // suitability for any purpose. |
---|
660 | |
---|
661 | // NOTE: this final is generated by libs/graph/doc/transitive_closure.w |
---|
662 | |
---|
663 | #ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP |
---|
664 | #define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP |
---|
665 | |
---|
666 | #include <vector> |
---|
667 | #include <functional> |
---|
668 | #include <boost/compose.hpp> |
---|
669 | #include <boost/graph/vector_as_graph.hpp> |
---|
670 | #include <boost/graph/strong_components.hpp> |
---|
671 | #include <boost/graph/topological_sort.hpp> |
---|
672 | #include <boost/graph/graph_concepts.hpp> |
---|
673 | #include <boost/graph/named_function_params.hpp> |
---|
674 | |
---|
675 | namespace boost { |
---|
676 | |
---|
677 | @<Union of successor sets@> |
---|
678 | @<Subscript function object@> |
---|
679 | @<Transitive Closure Function@> |
---|
680 | @<The All Defaults Interface@> |
---|
681 | @<Construct Default G to TC Vertex Mapping@> |
---|
682 | @<The Named Parameter Interface@> |
---|
683 | |
---|
684 | @<Warshall Transitive Closure@> |
---|
685 | |
---|
686 | @<Warren Transitive Closure@> |
---|
687 | |
---|
688 | } // namespace boost |
---|
689 | |
---|
690 | #endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP |
---|
691 | @} |
---|
692 | |
---|
693 | @o transitive_closure.cpp |
---|
694 | @{ |
---|
695 | // Copyright (c) Jeremy Siek 2001 |
---|
696 | // |
---|
697 | // Permission to use, copy, modify, distribute and sell this software |
---|
698 | // and its documentation for any purpose is hereby granted without fee, |
---|
699 | // provided that the above copyright notice appears in all copies and |
---|
700 | // that both that copyright notice and this permission notice appear |
---|
701 | // in supporting documentation. Silicon Graphics makes no |
---|
702 | // representations about the suitability of this software for any |
---|
703 | // purpose. It is provided "as is" without express or implied warranty. |
---|
704 | |
---|
705 | // NOTE: this final is generated by libs/graph/doc/transitive_closure.w |
---|
706 | |
---|
707 | #include <boost/graph/transitive_closure.hpp> |
---|
708 | #include <boost/graph/graphviz.hpp> |
---|
709 | |
---|
710 | int main(int, char*[]) |
---|
711 | { |
---|
712 | using namespace boost; |
---|
713 | typedef property<vertex_name_t, char> Name; |
---|
714 | typedef property<vertex_index_t, std::size_t, |
---|
715 | Name> Index; |
---|
716 | typedef adjacency_list<listS, listS, directedS, Index> graph_t; |
---|
717 | typedef graph_traits<graph_t>::vertex_descriptor vertex_t; |
---|
718 | graph_t G; |
---|
719 | std::vector<vertex_t> verts(4); |
---|
720 | for (int i = 0; i < 4; ++i) |
---|
721 | verts[i] = add_vertex(Index(i, Name('a' + i)), G); |
---|
722 | add_edge(verts[1], verts[2], G); |
---|
723 | add_edge(verts[1], verts[3], G); |
---|
724 | add_edge(verts[2], verts[1], G); |
---|
725 | add_edge(verts[3], verts[2], G); |
---|
726 | add_edge(verts[3], verts[0], G); |
---|
727 | |
---|
728 | std::cout << "Graph G:" << std::endl; |
---|
729 | print_graph(G, get(vertex_name, G)); |
---|
730 | |
---|
731 | adjacency_list<> TC; |
---|
732 | transitive_closure(G, TC); |
---|
733 | |
---|
734 | std::cout << std::endl << "Graph G+:" << std::endl; |
---|
735 | char name[] = "abcd"; |
---|
736 | print_graph(TC, name); |
---|
737 | std::cout << std::endl; |
---|
738 | |
---|
739 | std::ofstream out("tc-out.dot"); |
---|
740 | write_graphviz(out, TC, make_label_writer(name)); |
---|
741 | |
---|
742 | return 0; |
---|
743 | } |
---|
744 | @} |
---|
745 | |
---|
746 | \bibliographystyle{abbrv} |
---|
747 | \bibliography{jtran,ggcl,optimization,generic-programming,cad} |
---|
748 | |
---|
749 | \end{document} |
---|
750 | % LocalWords: Siek Prus Succ typename GraphTC VertexIndexMap const tc typedefs |
---|
751 | % LocalWords: typedef iterator adjacency SCC num scc CG cg resize SCCs di ch |
---|
752 | % LocalWords: traversal ith namespace topo inserter gx hy struct pos inf max |
---|
753 | % LocalWords: rbegin vec si hpp ifndef endif jtran ggcl |
---|