Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: downloads/boost_1_34_1/libs/mpl/doc/tutorial/implementing.html @ 29

Last change on this file since 29 was 29, checked in by landauf, 17 years ago

updated boost from 1_33_1 to 1_34_1

File size: 13.7 KB
Line 
1<?xml version="1.0" encoding="utf-8" ?>
2<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
4<!-- Copyright Aleksey Gurtovoy 2006. Distributed under the Boost -->
5<!-- Software License, Version 1.0. (See accompanying -->
6<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
7<head>
8<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
9<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
10<title>THE BOOST MPL LIBRARY: Implementing Multiplication</title>
11<link rel="stylesheet" href="../style.css" type="text/css" />
12</head>
13<body class="docframe">
14<table class="header"><tr class="header"><td class="header-group navigation-bar"><span class="navigation-group"><a href="./implementing-addition-and.html" class="navigation-link">Prev</a>&nbsp;<a href="./implementing-division.html" class="navigation-link">Next</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./implementing-addition-and.html" class="navigation-link">Back</a>&nbsp;<a href="./implementing-division.html" class="navigation-link">Along</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./dimensional-analysis.html" class="navigation-link">Up</a>&nbsp;<a href="../index.html" class="navigation-link">Home</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./tutorial_toc.html" class="navigation-link">Full TOC</a></span></td>
15<td class="header-group page-location"><a href="../index.html" class="navigation-link">Front Page</a> / <a href="./tutorial-metafunctions.html" class="navigation-link">Tutorial: Metafunctions and Higher-Order Metaprogramming</a> / <a href="./dimensional-analysis.html" class="navigation-link">Dimensional Analysis</a> / <a href="./implementing.html" class="navigation-link">Implementing Multiplication</a></td>
16</tr></table><div class="header-separator"></div>
17<div class="section" id="implementing">
18<h1><a class="toc-backref" href="./dimensional-analysis.html#id45" name="implementing">Implementing Multiplication</a></h1>
19<p>Multiplication is a bit more complicated than addition and
20subtraction.  So far, the dimensions of the arguments and results have
21all been identical, but when multiplying, the result will usually
22have different dimensions from either of the arguments.  For
23multiplication, the relation:</p>
24<blockquote>
25(<em>x</em><sup>a</sup>)(<em>x</em><sup>b</sup>) == <em>x</em> <sup>(a + b)</sup></blockquote>
26<!-- @litre_translator.line_offset -= 7 -->
27<p>implies that the exponents of the result dimensions should be the
28sum of corresponding exponents from the argument
29dimensions. Division is similar, except that the sum is replaced by
30a difference.</p>
31<p>To combine corresponding elements from two sequences, we'll use
32MPL's <tt class="literal"><span class="pre">transform</span></tt> algorithm.  <tt class="literal"><span class="pre">transform</span></tt> is a metafunction
33that iterates through two input sequences in parallel, passing an
34element from each sequence to an arbitrary binary metafunction, and
35placing the result in an output sequence.</p>
36<pre class="literal-block">
37template &lt;class Sequence1, class Sequence2, class BinaryOperation&gt;
38struct transform;  // returns a Sequence
39</pre>
40<p>The signature above should look familiar if you're acquainted with the
41STL <tt class="literal"><span class="pre">transform</span></tt> algorithm that accepts two <em>runtime</em> sequences
42as inputs:</p>
43<pre class="literal-block">
44template &lt;
45    class InputIterator1, class InputIterator2
46  , class OutputIterator, class BinaryOperation
47&gt;
48void transform(
49    InputIterator1 start1, InputIterator2 finish1
50  , InputIterator2 start2
51  , OutputIterator result, BinaryOperation func);
52</pre>
53<!-- @ example.wrap('namespace shield{','}')
54compile() -->
55<p>Now we just need to pass a <tt class="literal"><span class="pre">BinaryOperation</span></tt> that adds or
56subtracts in order to multiply or divide dimensions with
57<tt class="literal"><span class="pre">mpl::transform</span></tt>.  If you look through the <a class="reference" href="./reference-manual.html">the MPL reference manual</a>, you'll
58come across <tt class="literal"><span class="pre">plus</span></tt> and <tt class="literal"><span class="pre">minus</span></tt> metafunctions that do just what
59you'd expect:</p>
60<pre class="literal-block">
61#include &lt;boost/static_assert.hpp&gt;
62#include &lt;boost/mpl/plus.hpp&gt;
63#include &lt;boost/mpl/int.hpp&gt;
64namespace mpl = boost::mpl;
65
66BOOST_STATIC_ASSERT((
67    mpl::plus&lt;
68        mpl::int_&lt;2&gt;
69      , mpl::int_&lt;3&gt;
70    &gt;::type::value == 5
71));
72</pre>
73<!-- @ compile(pop = None) -->
74<div class="sidebar">
75<p class="sidebar-title first"><tt class="literal"><span class="pre">BOOST_STATIC_ASSERT</span></tt></p>
76<p>is a macro that causes a compilation error if its argument is
77false.  The double parentheses are required because the C++
78preprocessor can't parse templates: it would otherwise be
79fooled by the comma into treating the condition as two separate
80macro arguments.  Unlike its runtime analogue <tt class="literal"><span class="pre">assert(...)</span></tt>,
81<tt class="literal"><span class="pre">BOOST_STATIC_ASSERT</span></tt> can also be used at class scope,
82allowing us to put assertions in our metafunctions.  See
83Chapter <a class="reference" href="./resources.html">8</a> for an in-depth discussion.</p>
84</div>
85<!-- @prefix.append('#include <boost/static_assert.hpp>') -->
86<p>At this point it might seem as though we have a solution, but we're
87not quite there yet.  A naive attempt to apply the <tt class="literal"><span class="pre">transform</span></tt>
88algorithm in the implementation of <tt class="literal"><span class="pre">operator*</span></tt> yields a compiler
89error:</p>
90<pre class="literal-block">
91#include &lt;boost/mpl/transform.hpp&gt;
92
93template &lt;class T, class D1, class D2&gt;
94quantity&lt; 
95    T
96  , typename mpl::transform&lt;D1,D2,mpl::plus&gt;::type
97&gt;
98operator*(quantity&lt;T,D1&gt; x, quantity&lt;T,D2&gt; y) { ... }
99</pre>
100<!-- @ example.replace('{ ... }',';')
101compile('all', pop = 1, expect_error = True)
102prefix +=['#include <boost/mpl/transform.hpp>'] -->
103<!-- @litre_translator.line_offset -= 7 -->
104<p>It fails because the protocol says that metafunction arguments
105must be types, and <tt class="literal"><span class="pre">plus</span></tt> is not a type, but a class template.
106Somehow we need to make metafunctions like <tt class="literal"><span class="pre">plus</span></tt> fit the
107metadata mold.</p>
108<p>One natural way to introduce polymorphism between metafunctions and
109metadata is to employ the wrapper idiom that gave us polymorphism
110between types and integral constants.  Instead of a nested integral
111constant, we can use a class template nested within a
112<strong>metafunction class</strong>:</p>
113<pre class="literal-block">
114struct plus_f
115{
116    template &lt;class T1, class T2&gt;
117    struct apply
118    {
119       typedef typename mpl::plus&lt;T1,T2&gt;::type type;
120    };
121};
122</pre>
123<div class="admonition-definition admonition">
124<p class="admonition-title first">Definition</p>
125<p>A <strong>Metafunction Class</strong> is a class with a publicly accessible
126nested metafunction called <tt class="literal"><span class="pre">apply</span></tt>.</p>
127</div>
128<p>Whereas a metafunction is a template but not a type, a
129metafunction class wraps that template within an ordinary
130non-templated class, which <em>is</em> a type.  Since metafunctions
131operate on and return types, a metafunction class can be passed as
132an argument to, or returned from, another metafunction.</p>
133<p>Finally, we have a <tt class="literal"><span class="pre">BinaryOperation</span></tt> type that we can pass to
134<tt class="literal"><span class="pre">transform</span></tt> without causing a compilation error:</p>
135<pre class="literal-block">
136template &lt;class T, class D1, class D2&gt;
137quantity&lt; 
138    T
139  , typename mpl::transform&lt;D1,D2,<strong>plus_f</strong>&gt;::type  // new dimensions
140&gt;
141operator*(quantity&lt;T,D1&gt; x, quantity&lt;T,D2&gt; y)
142{
143    typedef typename mpl::transform&lt;D1,D2,<strong>plus_f</strong>&gt;::type dim;
144    return quantity&lt;T,dim&gt;( x.value() * y.value() );
145}
146</pre>
147<p>Now, if we want to compute the force exterted by gravity on a 5 kilogram
148laptop computer, that's just the acceleration due to gravity (9.8
149m/sec<sup>2</sup>) times the mass of the laptop:</p>
150<pre class="literal-block">
151quantity&lt;float,mass&gt; m(5.0f);
152quantity&lt;float,acceleration&gt; a(9.8f);
153std::cout &lt;&lt; &quot;force = &quot; &lt;&lt; (m * a).value();
154</pre>
155<!-- @example.wrap('#include <iostream>\nvoid ff() {', '}')
156
157compile('all', pop = 1) -->
158<p>Our <tt class="literal"><span class="pre">operator*</span></tt> multiplies the runtime values (resulting in
1596.0f), and our metaprogram code uses <tt class="literal"><span class="pre">transform</span></tt> to sum the
160meta-sequences of fundamental dimension exponents, so that the
161result type contains a representation of a new list of exponents,
162something like:</p>
163<pre class="literal-block">
164mpl::vector_c&lt;int,1,1,-2,0,0,0,0&gt;
165</pre>
166<!-- @example.wrap('''
167    #include <boost/mpl/vector_c.hpp>
168    typedef''', 'xxxx;')
169compile() -->
170<!-- @litre_translator.line_offset -= 7 -->
171<p>However, if we try to write:</p>
172<pre class="literal-block">
173quantity&lt;float,force&gt; f = m * a;
174</pre>
175<!-- @ ma_function_args = '(quantity<float,mass> m, quantity<float,acceleration> a)'
176
177example.wrap('void bogus%s {' % ma_function_args, '}')
178compile('all', pop = 1, expect_error = True) -->
179<!-- @litre_translator.line_offset -= 7 -->
180<p>we'll run into a little problem.  Although the result of
181<tt class="literal"><span class="pre">m</span> <span class="pre">*</span> <span class="pre">a</span></tt> does indeed represent a force with exponents of mass,
182length, and time 1, 1, and -2 respectively, the type returned by
183<tt class="literal"><span class="pre">transform</span></tt> isn't a specialization of <tt class="literal"><span class="pre">vector_c</span></tt>.  Instead,
184<tt class="literal"><span class="pre">transform</span></tt> works generically on the elements of its inputs and
185builds a new sequence with the appropriate elements: a type with
186many of the same sequence properties as
187<tt class="literal"><span class="pre">mpl::vector_c&lt;int,1,1,-2,0,0,0,0&gt;</span></tt>, but with a different C++ type
188altogether.  If you want to see the type's full name, you can try
189to compile the example yourself and look at the error message, but
190the exact details aren't important.  The point is that
191<tt class="literal"><span class="pre">force</span></tt> names a different type, so the assignment above will fail.</p>
192<p>In order to resolve the problem, we can add an implicit conversion
193from the multiplication's result type to <tt class="literal"><span class="pre">quantity&lt;float,force&gt;</span></tt>.
194Since we can't predict the exact types of the dimensions involved
195in any computation, this conversion will have to be templated,
196something like:</p>
197<pre class="literal-block">
198template &lt;class T, class Dimensions&gt;
199struct quantity
200{
201    // converting constructor
202    template &lt;class OtherDimensions&gt;
203    quantity(quantity&lt;T,OtherDimensions&gt; const&amp; rhs)
204      : m_value(rhs.value())
205    {
206    }
207    ...
208</pre>
209<!-- @ example.append("""
210      explicit quantity(T x)
211         : m_value(x)
212      {}
213
214      T value() const { return m_value; }
215   private:
216      T m_value;
217  };""")
218
219stack[quantity_declaration] = example
220ignore()  -->
221<p>Unfortunately, such a general conversion undermines our whole
222purpose, allowing nonsense such as:</p>
223<pre class="literal-block">
224// Should yield a force, not a mass!
225quantity&lt;float,mass&gt; bogus = m * a;
226</pre>
227<!-- @ example.wrap('void bogus2%s {' % ma_function_args, '}')
228bogus_example = example
229compile('all', pop = 1) -->
230<p>We can correct that problem using another MPL algorithm,
231<tt class="literal"><span class="pre">equal</span></tt>, which tests that two sequences have the same elements:</p>
232<pre class="literal-block">
233template &lt;class OtherDimensions&gt;
234quantity(quantity&lt;T,OtherDimensions&gt; const&amp; rhs)
235  : m_value(rhs.value())
236{
237    BOOST_STATIC_ASSERT((
238       mpl::equal&lt;Dimensions,OtherDimensions&gt;::type::value
239    ));
240}
241</pre>
242<!-- @ example.wrap('''
243   #include <boost/mpl/equal.hpp>
244
245   template <class T, class Dimensions>
246   struct quantity
247   {
248       explicit quantity(T x)
249          : m_value(x)
250       {}
251
252       T value() const { return m_value; }
253   ''','''
254    private:
255       T m_value;
256   };''')
257
258stack[quantity_declaration] = example
259stack[-1] = bogus_example
260compile('all', pop = 1, expect_error = True) -->
261<p>Now, if the dimensions of the two quantities fail to match, the
262assertion will cause a compilation error.</p>
263</div>
264
265<div class="footer-separator"></div>
266<table class="footer"><tr class="footer"><td class="header-group navigation-bar"><span class="navigation-group"><a href="./implementing-addition-and.html" class="navigation-link">Prev</a>&nbsp;<a href="./implementing-division.html" class="navigation-link">Next</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./implementing-addition-and.html" class="navigation-link">Back</a>&nbsp;<a href="./implementing-division.html" class="navigation-link">Along</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./dimensional-analysis.html" class="navigation-link">Up</a>&nbsp;<a href="../index.html" class="navigation-link">Home</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./tutorial_toc.html" class="navigation-link">Full TOC</a></span></td>
267</tr></table></body>
268</html>
Note: See TracBrowser for help on using the repository browser.