1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0.1 Transitional//EN"> |
---|
2 | |
---|
3 | <html> |
---|
4 | <head> |
---|
5 | <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> |
---|
6 | <title>Boost.MultiIndex Documentation - Examples</title> |
---|
7 | <link rel="stylesheet" href="style.css" type="text/css"> |
---|
8 | <link rel="start" href="index.html"> |
---|
9 | <link rel="prev" href="performance.html"> |
---|
10 | <link rel="up" href="index.html"> |
---|
11 | <link rel="next" href="tests.html"> |
---|
12 | </head> |
---|
13 | |
---|
14 | <body> |
---|
15 | <h1><img src="../../../boost.png" alt="boost.png (6897 bytes)" align= |
---|
16 | "middle" width="277" height="86">Boost.MultiIndex Examples</h1> |
---|
17 | |
---|
18 | <div class="prev_link"><a href="performance.html"><img src="prev.gif" alt="performance" border="0"><br> |
---|
19 | Performance |
---|
20 | </a></div> |
---|
21 | <div class="up_link"><a href="index.html"><img src="up.gif" alt="index" border="0"><br> |
---|
22 | Index |
---|
23 | </a></div> |
---|
24 | <div class="next_link"><a href="tests.html"><img src="next.gif" alt="tests" border="0"><br> |
---|
25 | Tests |
---|
26 | </a></div><br clear="all" style="clear: all;"> |
---|
27 | |
---|
28 | <hr> |
---|
29 | |
---|
30 | <h2>Contents</h2> |
---|
31 | |
---|
32 | <ul> |
---|
33 | <li><a href="#example1">Example 1: basic usage</a></li> |
---|
34 | <li><a href="#example2">Example 2: using member functions as keys</a></li> |
---|
35 | <li><a href="#example3">Example 3: constructing <code>multi_index_container</code>s |
---|
36 | with <code>ctor_args_list</code></a></li> |
---|
37 | <li><a href="#example4">Example 4: bidirectional map</a></li> |
---|
38 | <li><a href="#example5">Example 5: sequenced indices</a></li> |
---|
39 | <li><a href="#example6">Example 6: complex searches and foreign keys</a></li> |
---|
40 | <li><a href="#example7">Example 7: composite keys</a></li> |
---|
41 | <li><a href="#example8">Example 8: hashed indices</a></li> |
---|
42 | <li><a href="#example9">Example 9: serialization and MRU lists</a></li> |
---|
43 | <li><a href="#example10">Example 10: random access indices</a></li> |
---|
44 | <li><a href="#example11">Example 11: index rearrangement</a></li> |
---|
45 | </ul> |
---|
46 | |
---|
47 | <h2><a name="example1">Example 1: basic usage</a></h2> |
---|
48 | |
---|
49 | <p> |
---|
50 | See <a href="../example/basic.cpp">source code</a>. |
---|
51 | </p> |
---|
52 | |
---|
53 | <p> |
---|
54 | Basic program showing the multi-indexing capabilities of Boost.MultiIndex |
---|
55 | with an admittedly boring set of <code>employee</code> records. |
---|
56 | </p> |
---|
57 | |
---|
58 | <h2><a name="example2">Example 2: using member functions as keys</a></h2> |
---|
59 | |
---|
60 | <p> |
---|
61 | See <a href="../example/memfun_key.cpp">source code</a>. |
---|
62 | </p> |
---|
63 | |
---|
64 | <p> |
---|
65 | Usually keys assigned to an index are based on a member variable of the |
---|
66 | element, but key extractors can be defined which take their value from |
---|
67 | a member function. This has some similarity with the concept of |
---|
68 | <i>calculated keys</i> supported by some relational database engines. |
---|
69 | The example shows how to use the predefined <code>const_mem_fun</code> |
---|
70 | key extractor to deal with this situation. |
---|
71 | </p> |
---|
72 | |
---|
73 | <p> |
---|
74 | Keys based on member functions usually will not be actual references, |
---|
75 | but rather the temporary values resulting from the invocation of the |
---|
76 | member function used. This implies that <code>modify_key</code> cannot be |
---|
77 | applied to this type of extractors, which is a perfectly logical |
---|
78 | constraint anyway. |
---|
79 | </p> |
---|
80 | |
---|
81 | <h2><a name="example3">Example 3: constructing <code>multi_index_container</code>s |
---|
82 | with <code>ctor_args_list</code></a></h2> |
---|
83 | |
---|
84 | <p> |
---|
85 | See <a href="../example/non_default_ctor.cpp">source code</a>. |
---|
86 | </p> |
---|
87 | |
---|
88 | <p> |
---|
89 | We show a practical example of usage of <code>multi_index_container::ctor_arg_list</code>, |
---|
90 | whose definition and purpose are explained in the |
---|
91 | <a href="tutorial/creation.html#ctor_args_list">tutorial</a>. The |
---|
92 | program groups a sorted collection of numbers based on identification through |
---|
93 | modulo arithmetics, by which <code>x</code> and <code>y</code> are equivalent |
---|
94 | if <code>(x%n)==(y%n)</code>, for some fixed <code>n</code>. |
---|
95 | </p> |
---|
96 | |
---|
97 | <h2><a name="example4">Example 4: bidirectional map</a></h2> |
---|
98 | |
---|
99 | <p> |
---|
100 | See <a href="../example/bimap.cpp">source code</a>. |
---|
101 | </p> |
---|
102 | |
---|
103 | <p> |
---|
104 | This example shows how to construct a bidirectional map with |
---|
105 | <code>multi_index_container</code>. By a <i>bidirectional map</i> we mean |
---|
106 | a container of elements of <code>std::pair<const FromType,const ToType></code> |
---|
107 | such that no two elements exists with the same <code>first</code> |
---|
108 | <i>or</i> <code>second</code> value (<code>std::map</code> only |
---|
109 | guarantees uniqueness of the first member). Fast lookup is provided |
---|
110 | for both keys. The program features a tiny Spanish-English |
---|
111 | dictionary with online query of words in both languages. |
---|
112 | </p> |
---|
113 | |
---|
114 | <h2><a name="example5">Example 5: sequenced indices</a></h2> |
---|
115 | |
---|
116 | <p> |
---|
117 | See <a href="../example/sequenced.cpp">source code</a>. |
---|
118 | </p> |
---|
119 | |
---|
120 | <p> |
---|
121 | The combination of a sequenced index with an index of type <code>ordered_non_unique</code> |
---|
122 | yields a <code>list</code>-like structure with fast lookup capabilities. The |
---|
123 | example performs some operations on a given text, like word counting and |
---|
124 | selective deletion of some words. |
---|
125 | </p> |
---|
126 | |
---|
127 | <h2><a name="example6">Example 6: complex searches and foreign keys</a></h2> |
---|
128 | |
---|
129 | <p> |
---|
130 | See <a href="../example/complex_structs.cpp">source code</a>. |
---|
131 | </p> |
---|
132 | |
---|
133 | <p> |
---|
134 | This program illustrates some advanced techniques that can be applied |
---|
135 | for complex data structures using <code>multi_index_container</code>. |
---|
136 | Consider a <code>car_model</code> class for storing information |
---|
137 | about automobiles. On a first approach, <code>car_model</code> can |
---|
138 | be defined as: |
---|
139 | </p> |
---|
140 | |
---|
141 | <blockquote><pre> |
---|
142 | <span class=keyword>struct</span> <span class=identifier>car_model</span> |
---|
143 | <span class=special>{</span> |
---|
144 | <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>model</span><span class=special>;</span> |
---|
145 | <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>manufacturer</span><span class=special>;</span> |
---|
146 | <span class=keyword>int</span> <span class=identifier>price</span><span class=special>;</span> |
---|
147 | <span class=special>};</span> |
---|
148 | </pre></blockquote> |
---|
149 | |
---|
150 | <p> |
---|
151 | This definition has a design flaw that any reader acquainted with |
---|
152 | relational databases can easily spot: The <code>manufacturer</code> |
---|
153 | member is duplicated among all cars having the same manufacturer. |
---|
154 | This is a waste of space and poses difficulties when, for instance, |
---|
155 | the name of a manufacturer has to be changed. Following the usual |
---|
156 | principles in relational database design, the appropriate design |
---|
157 | involves having the manufactures stored in a separate |
---|
158 | <code>multi_index_container</code> and store pointers to these in |
---|
159 | <code>car_model</code>: |
---|
160 | </p> |
---|
161 | |
---|
162 | <blockquote><pre> |
---|
163 | <span class=keyword>struct</span> <span class=identifier>car_manufacturer</span> |
---|
164 | <span class=special>{</span> |
---|
165 | <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>name</span><span class=special>;</span> |
---|
166 | <span class=special>};</span> |
---|
167 | |
---|
168 | <span class=keyword>struct</span> <span class=identifier>car_model</span> |
---|
169 | <span class=special>{</span> |
---|
170 | <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>model</span><span class=special>;</span> |
---|
171 | <span class=identifier>car_manufacturer</span><span class=special>*</span> <span class=identifier>manufacturer</span><span class=special>;</span> |
---|
172 | <span class=keyword>int</span> <span class=identifier>price</span><span class=special>;</span> |
---|
173 | <span class=special>};</span> |
---|
174 | </pre></blockquote> |
---|
175 | |
---|
176 | <p> |
---|
177 | Although predefined Boost.MultiIndex key extractors can handle many |
---|
178 | situations involving pointers (see |
---|
179 | <a href="tutorial/key_extraction.html#advanced_key_extractors">advanced features |
---|
180 | of Boost.MultiIndex key extractors</a> in the tutorial), this case |
---|
181 | is complex enough that a suitable key extractor has to be defined. The following |
---|
182 | utility cascades two key extractors: |
---|
183 | </p> |
---|
184 | |
---|
185 | <blockquote><pre> |
---|
186 | <span class=keyword>template</span><span class=special><</span><span class=keyword>class</span> <span class=identifier>KeyExtractor1</span><span class=special>,</span><span class=keyword>class</span> <span class=identifier>KeyExtractor2</span><span class=special>></span> |
---|
187 | <span class=keyword>struct</span> <span class=identifier>key_from_key</span> |
---|
188 | <span class=special>{</span> |
---|
189 | <span class=keyword>public</span><span class=special>:</span> |
---|
190 | <span class=keyword>typedef</span> <span class=keyword>typename</span> <span class=identifier>KeyExtractor1</span><span class=special>::</span><span class=identifier>result_type</span> <span class=identifier>result_type</span><span class=special>;</span> |
---|
191 | |
---|
192 | <span class=identifier>key_from_key</span><span class=special>(</span> |
---|
193 | <span class=keyword>const</span> <span class=identifier>KeyExtractor1</span><span class=special>&</span> <span class=identifier>key1_</span><span class=special>=</span><span class=identifier>KeyExtractor1</span><span class=special>(),</span> |
---|
194 | <span class=keyword>const</span> <span class=identifier>KeyExtractor2</span><span class=special>&</span> <span class=identifier>key2_</span><span class=special>=</span><span class=identifier>KeyExtractor2</span><span class=special>()):</span> |
---|
195 | <span class=identifier>key1</span><span class=special>(</span><span class=identifier>key1_</span><span class=special>),</span><span class=identifier>key2</span><span class=special>(</span><span class=identifier>key2_</span><span class=special>)</span> |
---|
196 | <span class=special>{}</span> |
---|
197 | |
---|
198 | <span class=keyword>template</span><span class=special><</span><span class=keyword>typename</span> <span class=identifier>Arg</span><span class=special>></span> |
---|
199 | <span class=identifier>result_type</span> <span class=keyword>operator</span><span class=special>()(</span><span class=identifier>Arg</span><span class=special>&</span> <span class=identifier>arg</span><span class=special>)</span><span class=keyword>const</span> |
---|
200 | <span class=special>{</span> |
---|
201 | <span class=keyword>return</span> <span class=identifier>key1</span><span class=special>(</span><span class=identifier>key2</span><span class=special>(</span><span class=identifier>arg</span><span class=special>));</span> |
---|
202 | <span class=special>}</span> |
---|
203 | |
---|
204 | <span class=keyword>private</span><span class=special>:</span> |
---|
205 | <span class=identifier>KeyExtractor1</span> <span class=identifier>key1</span><span class=special>;</span> |
---|
206 | <span class=identifier>KeyExtractor2</span> <span class=identifier>key2</span><span class=special>;</span> |
---|
207 | <span class=special>};</span> |
---|
208 | </pre></blockquote> |
---|
209 | |
---|
210 | <p> |
---|
211 | so that access from a <code>car_model</code> to the <code>name</code> field |
---|
212 | of its associated <code>car_manufacturer</code> can be accomplished with |
---|
213 | </p> |
---|
214 | |
---|
215 | <blockquote><pre> |
---|
216 | <span class=identifier>key_from_key</span><span class=special><</span> |
---|
217 | <span class=identifier>member</span><span class=special><</span><span class=identifier>car_manufacturer</span><span class=special>,</span><span class=keyword>const</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>,&</span><span class=identifier>car_manufacturer</span><span class=special>::</span><span class=identifier>name</span><span class=special>>,</span> |
---|
218 | <span class=identifier>member</span><span class=special><</span><span class=identifier>car_model</span><span class=special>,</span><span class=keyword>const</span> <span class=identifier>car_manufacturer</span> <span class=special>*,</span><span class=identifier>car_model</span><span class=special>::</span><span class=identifier>manufacturer</span><span class=special>></span> |
---|
219 | <span class=special>></span> |
---|
220 | </pre></blockquote> |
---|
221 | |
---|
222 | <p> |
---|
223 | The program asks the user for a car manufacturer and a range of prices |
---|
224 | and returns the car models satisfying these requirements. This is a complex |
---|
225 | search that cannot be performed on a single operation. Broadly sketched, |
---|
226 | one procedure for executing the selection is: |
---|
227 | <ol> |
---|
228 | <li>Select the elements with the given manufacturer by means |
---|
229 | of <code>equal_range</code>, |
---|
230 | <li>feed these elements into a <code>multi_index_container</code> sorted |
---|
231 | by price, |
---|
232 | <li>select by price using <code>lower_bound</code> and |
---|
233 | <code>upper_bound</code>; |
---|
234 | </ol> |
---|
235 | or alternatively: |
---|
236 | <ol> |
---|
237 | <li>Select the elements within the price range with |
---|
238 | <code>lower_bound</code> and <code>upper_bound</code>, |
---|
239 | <li>feed these elements into a <code>multi_index_container</code> sorted |
---|
240 | by manufacturer, |
---|
241 | <li>locate the elements with given manufacturer using |
---|
242 | <code>equal_range</code>. |
---|
243 | </ol> |
---|
244 | An interesting technique developed in the example lies in |
---|
245 | the construction of the intermediate <code>multi_index_container</code>. |
---|
246 | In order to avoid object copying, appropriate <i>view</i> types |
---|
247 | are defined with <code>multi_index_container</code>s having as elements |
---|
248 | pointers to <code>car_model</code>s instead of actual objects. |
---|
249 | These views have to be supplemented with appropriate |
---|
250 | dereferencing key extractors. |
---|
251 | </p> |
---|
252 | |
---|
253 | <h2><a name="example7">Example 7: composite keys</a></h2> |
---|
254 | |
---|
255 | <p> |
---|
256 | See <a href="../example/composite_keys.cpp">source code</a>. |
---|
257 | </p> |
---|
258 | |
---|
259 | <p> |
---|
260 | Boost.MultiIndex <a href="tutorial/key_extraction.html#composite_keys"> |
---|
261 | <code>composite_key</code></a> construct provides a flexible tool for |
---|
262 | creating indices with non-trivial sorting criteria. |
---|
263 | The program features a rudimentary simulation of a file system |
---|
264 | along with an interactive Unix-like shell. A file entry is represented by |
---|
265 | the following structure: |
---|
266 | </p> |
---|
267 | |
---|
268 | <blockquote><pre> |
---|
269 | <span class=keyword>struct</span> <span class=identifier>file_entry</span> |
---|
270 | <span class=special>{</span> |
---|
271 | <span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span> <span class=identifier>name</span><span class=special>;</span> |
---|
272 | <span class=keyword>unsigned</span> <span class=identifier>size</span><span class=special>;</span> |
---|
273 | <span class=keyword>bool</span> <span class=identifier>is_dir</span><span class=special>;</span> <span class=comment>// true if the entry is a directory</span> |
---|
274 | <span class=keyword>const</span> <span class=identifier>file_entry</span><span class=special>*</span> <span class=identifier>dir</span><span class=special>;</span> <span class=comment>// directory this entry belongs in</span> |
---|
275 | <span class=special>};</span> |
---|
276 | </pre></blockquote> |
---|
277 | |
---|
278 | <p> |
---|
279 | Entries are kept in a <code>multi_index_container</code> maintaining two indices |
---|
280 | with composite keys: |
---|
281 | <ul> |
---|
282 | <li>A primary index ordered by directory and name,</li> |
---|
283 | <li>a secondary index ordered by directory and size.</li> |
---|
284 | </ul> |
---|
285 | The reason that the order is made firstly by the directory in which |
---|
286 | the files are located obeys to the local nature of the shell commands, |
---|
287 | like for instance <code>ls</code>. The shell simulation only has three |
---|
288 | commands: |
---|
289 | <ul> |
---|
290 | <li><code>cd [.|..|<i><directory></i>]</code></li> |
---|
291 | <li><code>ls [-s]</code> (<code>-s</code> orders the output by size)</li> |
---|
292 | <li><code>mkdir <i><directory></i></code></li> |
---|
293 | </ul> |
---|
294 | The program exits when the user presses the Enter key at the command prompt. |
---|
295 | </p> |
---|
296 | |
---|
297 | <p> |
---|
298 | The reader is challenged to add more functionality to the program; for |
---|
299 | instance: |
---|
300 | <ul> |
---|
301 | <li>Implement additional commands, like <code>cp</code>.</li> |
---|
302 | <li>Add handling of absolute paths.</li> |
---|
303 | <li>Use <a href="tutorial/creation.html#serialization">serialization</a> |
---|
304 | to store and retrieve the filesystem state between program runs.</li> |
---|
305 | </ul> |
---|
306 | </p> |
---|
307 | |
---|
308 | <h2><a name="example8">Example 8: hashed indices</a></h2> |
---|
309 | |
---|
310 | <p> |
---|
311 | See <a href="../example/hashed.cpp">source code</a>. |
---|
312 | </p> |
---|
313 | |
---|
314 | <p> |
---|
315 | Hashed indices can be used as an alternative to ordered indices when |
---|
316 | fast lookup is needed and sorting information is of no interest. The |
---|
317 | example features a word counter where duplicate entries are checked |
---|
318 | by means of a hashed index. Confront the word counting algorithm with |
---|
319 | that of <a href="#example5">example 5</a>. |
---|
320 | </p> |
---|
321 | |
---|
322 | <h2><a name="example9">Example 9: serialization and MRU lists</a></h2> |
---|
323 | |
---|
324 | <p> |
---|
325 | See <a href="../example/serialization.cpp">source code</a>. |
---|
326 | </p> |
---|
327 | |
---|
328 | <p> |
---|
329 | A typical application of serialization capabilities allows a program to |
---|
330 | restore the user context between executions. The example program asks |
---|
331 | the user for words and keeps a record of the ten most recently entered |
---|
332 | ones, in the current or in previous sessions. The serialized data structure, |
---|
333 | sometimes called an <i>MRU (most recently used) list</i>, has some interest |
---|
334 | on its own: an MRU list behaves as a regular FIFO queue, with the exception |
---|
335 | that, when inserting a preexistent entry, this does not appear twice, but |
---|
336 | instead the entry is moved to the front of the list. You can observe this |
---|
337 | behavior in many programs featuring a "Recent files" menu command. This |
---|
338 | data structure is implemented with <code>multi_index_container</code> by |
---|
339 | combining a sequenced index and an index of type <code>hashed_unique</code>. |
---|
340 | </p> |
---|
341 | |
---|
342 | <h2><a name="example10">Example 10: random access indices</a></h2> |
---|
343 | |
---|
344 | <p> |
---|
345 | See <a href="../example/random_access.cpp">source code</a>. |
---|
346 | </p> |
---|
347 | |
---|
348 | <p> |
---|
349 | The example resumes the text container introduced in |
---|
350 | <a href="#example5">example 5</a> and shows how substituting a random |
---|
351 | access index for a sequenced index allows for extra capabilities like |
---|
352 | efficient access by position and calculation of the offset of a given |
---|
353 | element into the container. |
---|
354 | </p> |
---|
355 | |
---|
356 | <h2><a name="example11">Example 11: index rearrangement</a></h2> |
---|
357 | |
---|
358 | <p> |
---|
359 | See <a href="../example/rearrange.cpp">source code</a>. |
---|
360 | </p> |
---|
361 | |
---|
362 | <p> |
---|
363 | There is a relatively common piece of urban lore claiming that |
---|
364 | a deck of cards must be shuffled seven times in a row to be perfectly |
---|
365 | mixed. The statement derives from the works of mathematician Persi |
---|
366 | Diaconis on <i>riffle shuffling</i>: this shuffling |
---|
367 | technique involves splitting the deck in two packets roughly the same |
---|
368 | size and then dropping the cards from both packets so that they become |
---|
369 | interleaved. It has been shown that when repeating this procedure |
---|
370 | seven times the statistical distribution of cards is reasonably |
---|
371 | close to that associated with a truly random permutation. A measure |
---|
372 | of "randomness" can be estimated by counting <i>rising sequences</i>: |
---|
373 | consider a permutation of the sequence 1,2, ... , <i>n</i>, a rising sequence |
---|
374 | is a maximal chain of consecutive elements <i>m</i>, <i>m+1</i>, ... , <i>m+r</i> |
---|
375 | such that they are arranged in ascending order. For instance, the permutation |
---|
376 | 125364789 is composed of the two rising sequences 1234 and 56789, |
---|
377 | as becomes obvious by displaying the sequence like this, |
---|
378 | <span style="vertical-align:sub">1</span><span style="vertical-align:sub">2</span><span style="vertical-align:super">5</span><span style="vertical-align:sub">3</span><span style="vertical-align:super">6</span><span style="vertical-align:sub">4</span><span style="vertical-align:super">7</span><span style="vertical-align:super">8</span><span style="vertical-align:super">9</span>. |
---|
379 | The average number of rising sequences in a random permutation of |
---|
380 | <i>n</i> elements is (<i>n</i>+1)/2: by contrast, after a single riffle |
---|
381 | shuffle of an initially sorted deck of cards, there cannot be more than |
---|
382 | two rising sequences. The average number of rising sequences approximates |
---|
383 | to (<i>n</i>+1)/2 as the number of consecutive riffle shuffles increases, |
---|
384 | with seven shuffles yielding a close result for a 52-card poker deck. |
---|
385 | Brad Mann's paper |
---|
386 | <a href="http://www.dartmouth.edu/~chance/teaching_aids/books_articles/Mann.pdf">"How |
---|
387 | many times should you shuffle a deck of cards?"</a> provides a |
---|
388 | rigorous yet very accessible treatment of this subject. |
---|
389 | |
---|
390 | </p> |
---|
391 | |
---|
392 | <p> |
---|
393 | The example program estimates the average number of rising sequences |
---|
394 | in a 52-card deck after repeated riffle shuffling as well as applying |
---|
395 | a completely random permutation. The deck is modeled by the following |
---|
396 | container: |
---|
397 | <blockquote><pre> |
---|
398 | <span class=identifier>multi_index_container</span><span class=special><</span> |
---|
399 | <span class=keyword>int</span><span class=special>,</span> |
---|
400 | <span class=identifier>indexed_by</span><span class=special><</span> |
---|
401 | <span class=identifier>random_access</span><span class=special><>,</span> |
---|
402 | <span class=identifier>random_access</span><span class=special><></span> |
---|
403 | <span class=special>></span> |
---|
404 | <span class=special>></span> |
---|
405 | </pre></blockquote> |
---|
406 | where the first index stores the current arrangement of the deck, while |
---|
407 | the second index is used to remember the start position. This representation |
---|
408 | allows for an efficient implementation of a rising sequences counting |
---|
409 | algorithm in linear time. |
---|
410 | <a href="reference/rnd_indices.html#rearrange"><code>rearrange</code></a> |
---|
411 | is used to apply to the deck a shuffle performed externally on an |
---|
412 | auxiliary data structure. |
---|
413 | </p> |
---|
414 | |
---|
415 | <hr> |
---|
416 | |
---|
417 | <div class="prev_link"><a href="performance.html"><img src="prev.gif" alt="performance" border="0"><br> |
---|
418 | Performance |
---|
419 | </a></div> |
---|
420 | <div class="up_link"><a href="index.html"><img src="up.gif" alt="index" border="0"><br> |
---|
421 | Index |
---|
422 | </a></div> |
---|
423 | <div class="next_link"><a href="tests.html"><img src="next.gif" alt="tests" border="0"><br> |
---|
424 | Tests |
---|
425 | </a></div><br clear="all" style="clear: all;"> |
---|
426 | |
---|
427 | <br> |
---|
428 | |
---|
429 | <p>Revised March 3rd 2006</p> |
---|
430 | |
---|
431 | <p>© Copyright 2003-2006 Joaquín M López Muñoz. |
---|
432 | Distributed under the Boost Software |
---|
433 | License, Version 1.0. (See accompanying file <a href="../../../LICENSE_1_0.txt"> |
---|
434 | LICENSE_1_0.txt</a> or copy at <a href="http://www.boost.org/LICENSE_1_0.txt"> |
---|
435 | http://www.boost.org/LICENSE_1_0.txt</a>) |
---|
436 | </p> |
---|
437 | |
---|
438 | </body> |
---|
439 | </html> |
---|