1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0.1 Transitional//EN"> |
---|
2 | |
---|
3 | <html> |
---|
4 | <head> |
---|
5 | <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> |
---|
6 | <title>Boost.MultiIndex Documentation - Performance</title> |
---|
7 | <link rel="stylesheet" href="style.css" type="text/css"> |
---|
8 | <link rel="start" href="index.html"> |
---|
9 | <link rel="prev" href="compiler_specifics.html"> |
---|
10 | <link rel="up" href="index.html"> |
---|
11 | <link rel="next" href="examples.html"> |
---|
12 | </head> |
---|
13 | |
---|
14 | <body> |
---|
15 | <h1><img src="../../../boost.png" alt="boost.png (6897 bytes)" align= |
---|
16 | "middle" width="277" height="86">Boost.MultiIndex Performance</h1> |
---|
17 | |
---|
18 | <div class="prev_link"><a href="compiler_specifics.html"><img src="prev.gif" alt="compiler specifics" border="0"><br> |
---|
19 | Compiler specifics |
---|
20 | </a></div> |
---|
21 | <div class="up_link"><a href="index.html"><img src="up.gif" alt="index" border="0"><br> |
---|
22 | Index |
---|
23 | </a></div> |
---|
24 | <div class="next_link"><a href="examples.html"><img src="next.gif" alt="examples" border="0"><br> |
---|
25 | Examples |
---|
26 | </a></div><br clear="all" style="clear: all;"> |
---|
27 | |
---|
28 | <hr> |
---|
29 | |
---|
30 | <h2>Contents</h2> |
---|
31 | |
---|
32 | <ul> |
---|
33 | <li><a href="#intro">Introduction</a></li> |
---|
34 | <li><a href="#simulation">Manual simulation of a <code>multi_index_container</code></a></li> |
---|
35 | <li><a href="#spatial_efficiency">Spatial efficiency</a></li> |
---|
36 | <li><a href="#time_efficiency">Time efficiency</a></li> |
---|
37 | <li><a href="#tests">Performance tests</a> |
---|
38 | <ul> |
---|
39 | <li><a href="#test_1r">Results for 1 ordered index</a> |
---|
40 | <ul> |
---|
41 | <li><a href="#memory_1r">Memory consumption</a></li> |
---|
42 | <li><a href="#time_1r">Execution time</a></li> |
---|
43 | </ul> |
---|
44 | </li> |
---|
45 | <li><a href="#test_1s">Results for 1 sequenced index</a> |
---|
46 | <ul> |
---|
47 | <li><a href="#memory_1s">Memory consumption</a></li> |
---|
48 | <li><a href="#time_1s">Execution time</a></li> |
---|
49 | </ul> |
---|
50 | </li> |
---|
51 | <li><a href="#test_2r">Results for 2 ordered indices</a> |
---|
52 | <ul> |
---|
53 | <li><a href="#memory_2r">Memory consumption</a></li> |
---|
54 | <li><a href="#time_2r">Execution time</a></li> |
---|
55 | </ul> |
---|
56 | </li> |
---|
57 | <li><a href="#test_1r1s">Results for 1 ordered index + 1 sequenced index</a> |
---|
58 | <ul> |
---|
59 | <li><a href="#memory_1r1s">Memory consumption</a></li> |
---|
60 | <li><a href="#time_1r1s">Execution time</a></li> |
---|
61 | </ul> |
---|
62 | </li> |
---|
63 | <li><a href="#test_3r">Results for 3 ordered indices</a> |
---|
64 | <ul> |
---|
65 | <li><a href="#memory_3r">Memory consumption</a></li> |
---|
66 | <li><a href="#time_3r">Execution time</a></li> |
---|
67 | </ul> |
---|
68 | </li> |
---|
69 | <li><a href="#test_2r1s">Results for 2 ordered indices + 1 sequenced index</a> |
---|
70 | <ul> |
---|
71 | <li><a href="#memory_2r1s">Memory consumption</a></li> |
---|
72 | <li><a href="#time_2r1s">Execution time</a></li> |
---|
73 | </ul> |
---|
74 | </li> |
---|
75 | </ul> |
---|
76 | </li> |
---|
77 | <li><a href="#conclusions">Conclusions</a></li> |
---|
78 | </ul> |
---|
79 | |
---|
80 | <h2><a name="intro">Introduction</a></h2> |
---|
81 | |
---|
82 | <p> |
---|
83 | Boost.MultiIndex helps the programmer to avoid the manual construction of cumbersome |
---|
84 | compositions of containers when multi-indexing capabilities are needed. Furthermore, |
---|
85 | it does so in an efficient manner, both in terms of space and time consumption. The |
---|
86 | space savings stem from the compact representation of the underlying data structures, |
---|
87 | requiring a single node per element. As for time efficiency, Boost.MultiIndex |
---|
88 | intensively uses metaprogramming techniques producing very tight implementations |
---|
89 | of member functions which take care of the elementary operations for each index: |
---|
90 | for <code>multi_index_container</code>s with two or more indices, the running time |
---|
91 | can be reduced to half as long as with manual simulations involving several |
---|
92 | STL containers. |
---|
93 | </p> |
---|
94 | |
---|
95 | <h2><a name="simulation">Manual simulation of a <code>multi_index_container</code></a></h2> |
---|
96 | |
---|
97 | <p> |
---|
98 | The section on <a href="tutorial/techniques.html#emulate_std_containers">emulation |
---|
99 | of standard containers with <code>multi_index_container</code></a> shows the equivalence |
---|
100 | between single-index <code>multi_index_container</code>s and some STL containers. Let us now |
---|
101 | concentrate on the problem of simulating a <code>multi_index_container</code> with two |
---|
102 | or more indices with a suitable combination of standard containers. |
---|
103 | </p> |
---|
104 | |
---|
105 | <p> |
---|
106 | Consider the following instantiation of <code>multi_index_container</code>: |
---|
107 | </p> |
---|
108 | |
---|
109 | <blockquote><pre> |
---|
110 | <span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special><</span> |
---|
111 | <span class=keyword>int</span><span class=special>,</span> |
---|
112 | <span class=identifier>indexed_by</span><span class=special><</span> |
---|
113 | <span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span> |
---|
114 | <span class=identifier>ordered_non_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>>,</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>greater</span> <span class=special>>,</span> |
---|
115 | <span class=special>></span> |
---|
116 | <span class=special>></span> <span class=identifier>indexed_t</span><span class=special>;</span> |
---|
117 | </pre></blockquote> |
---|
118 | |
---|
119 | <p> |
---|
120 | <code>indexed_t</code> maintains two internal indices on elements of type |
---|
121 | <code>int</code>. In order to simulate this data structure resorting only to |
---|
122 | standard STL containers, one can use on a first approach the following types: |
---|
123 | </p> |
---|
124 | |
---|
125 | <blockquote><pre> |
---|
126 | <span class=comment>// dereferencing compare predicate</span> |
---|
127 | <span class=keyword>template</span><span class=special><</span><span class=keyword>typename</span> <span class=identifier>Iterator</span><span class=special>,</span><span class=keyword>typename</span> <span class=identifier>Compare</span><span class=special>></span> |
---|
128 | <span class=keyword>struct</span> <span class=identifier>it_compare</span> |
---|
129 | <span class=special>{</span> |
---|
130 | <span class=keyword>bool</span> <span class=keyword>operator</span><span class=special>()(</span><span class=keyword>const</span> <span class=identifier>Iterator</span><span class=special>&</span> <span class=identifier>x</span><span class=special>,</span><span class=keyword>const</span> <span class=identifier>Iterator</span><span class=special>&</span> <span class=identifier>y</span><span class=special>)</span><span class=keyword>const</span> |
---|
131 | <span class=special>{</span> |
---|
132 | <span class=keyword>return</span> <span class=identifier>comp</span><span class=special>(*</span><span class=identifier>x</span><span class=special>,*</span><span class=identifier>y</span><span class=special>);</span> |
---|
133 | <span class=special>}</span> |
---|
134 | |
---|
135 | <span class=keyword>private</span><span class=special>:</span> |
---|
136 | <span class=identifier>Compare</span> <span class=identifier>comp</span><span class=special>;</span> |
---|
137 | <span class=special>};</span> |
---|
138 | |
---|
139 | <span class=keyword>typedef</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>set</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=identifier>manual_t1</span><span class=special>;</span> <span class=comment>// equivalent to indexed_t's index #0</span> |
---|
140 | <span class=keyword>typedef</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>multiset</span><span class=special><</span> |
---|
141 | <span class=keyword>const</span> <span class=keyword>int</span><span class=special>*,</span> |
---|
142 | <span class=identifier>it_compare</span><span class=special><</span> |
---|
143 | <span class=keyword>const</span> <span class=keyword>int</span><span class=special>*,</span> |
---|
144 | <span class=identifier>std</span><span class=special>::</span><span class=identifier>greater</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> |
---|
145 | <span class=special>></span> |
---|
146 | <span class=special>></span> <span class=identifier>manual_t2</span><span class=special>;</span> <span class=comment>// equivalent to indexed_t's index #1</span> |
---|
147 | </pre></blockquote> |
---|
148 | |
---|
149 | <p> |
---|
150 | where <code>manual_t1</code> is the "base" container that holds |
---|
151 | the actual elements, and <code>manual_t2</code> stores pointers to |
---|
152 | elements of <code>manual_t1</code>. This scheme turns out to be quite |
---|
153 | inefficient, though: while insertion into the data structure is simple enough: |
---|
154 | </p> |
---|
155 | |
---|
156 | <blockquote><pre> |
---|
157 | <span class=identifier>manual_t1</span> <span class=identifier>c1</span><span class=special>;</span> |
---|
158 | <span class=identifier>manual_t2</span> <span class=identifier>c2</span><span class=special>;</span> |
---|
159 | |
---|
160 | <span class=comment>// insert the element 5</span> |
---|
161 | <span class=identifier>manual_t1</span><span class=special>::</span><span class=identifier>iterator</span> <span class=identifier>it1</span><span class=special>=</span><span class=identifier>c1</span><span class=special>.</span><span class=identifier>insert</span><span class=special>(</span><span class=number>5</span><span class=special>).</span><span class=identifier>first</span><span class=special>;</span> |
---|
162 | <span class=identifier>c2</span><span class=special>.</span><span class=identifier>insert</span><span class=special>(&*</span><span class=identifier>it1</span><span class=special>);</span> |
---|
163 | </pre></blockquote> |
---|
164 | |
---|
165 | deletion, on the other hand, necessitates a logarithmic search, whereas |
---|
166 | <code>indexed_t</code> deletes in constant time: |
---|
167 | |
---|
168 | <blockquote><pre> |
---|
169 | <span class=comment>// remove the element pointed to by it2</span> |
---|
170 | <span class=identifier>manual_t2</span><span class=special>::</span><span class=identifier>iterator</span> <span class=identifier>it2</span><span class=special>=...;</span> |
---|
171 | <span class=identifier>c1</span><span class=special>.</span><span class=identifier>erase</span><span class=special>(**</span><span class=identifier>it2</span><span class=special>);</span> <span class=comment>// watch out! performs in logarithmic time</span> |
---|
172 | <span class=identifier>c2</span><span class=special>.</span><span class=identifier>erase</span><span class=special>(</span><span class=identifier>it2</span><span class=special>);</span> |
---|
173 | </pre></blockquote> |
---|
174 | |
---|
175 | <p> |
---|
176 | The right approach consists of feeding the second container not with |
---|
177 | raw pointers, but with elements of type <code>manual_t1::iterator</code>: |
---|
178 | </p> |
---|
179 | |
---|
180 | <blockquote><pre> |
---|
181 | <span class=keyword>typedef</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>set</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=identifier>manual_t1</span><span class=special>;</span> <span class=comment>// equivalent to indexed_t's index #0</span> |
---|
182 | <span class=keyword>typedef</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>multiset</span><span class=special><</span> |
---|
183 | <span class=identifier>manual_t1</span><span class=special>::</span><span class=identifier>iterator</span><span class=special>,</span> |
---|
184 | <span class=identifier>it_compare</span><span class=special><</span> |
---|
185 | <span class=identifier>manual_t1</span><span class=special>::</span><span class=identifier>iterator</span><span class=special>,</span> |
---|
186 | <span class=identifier>std</span><span class=special>::</span><span class=identifier>greater</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> |
---|
187 | <span class=special>></span> |
---|
188 | <span class=special>></span> <span class=identifier>manual_t2</span><span class=special>;</span> <span class=comment>// equivalent to indexed_t's index #1</span> |
---|
189 | </pre></blockquote> |
---|
190 | |
---|
191 | <p> |
---|
192 | Now, insertion and deletion can be performed with complexity bounds |
---|
193 | equivalent to those of <code>indexed_t</code>: |
---|
194 | </p> |
---|
195 | |
---|
196 | <blockquote><pre> |
---|
197 | <span class=identifier>manual_t1</span> <span class=identifier>c1</span><span class=special>;</span> |
---|
198 | <span class=identifier>manual_t2</span> <span class=identifier>c2</span><span class=special>;</span> |
---|
199 | |
---|
200 | <span class=comment>// insert the element 5</span> |
---|
201 | <span class=identifier>manual_t1</span><span class=special>::</span><span class=identifier>iterator</span> <span class=identifier>it1</span><span class=special>=</span><span class=identifier>c1</span><span class=special>.</span><span class=identifier>insert</span><span class=special>(</span><span class=number>5</span><span class=special>).</span><span class=identifier>first</span><span class=special>;</span> |
---|
202 | <span class=identifier>c2</span><span class=special>.</span><span class=identifier>insert</span><span class=special>(</span><span class=identifier>it1</span><span class=special>);</span> |
---|
203 | |
---|
204 | <span class=comment>// remove the element pointed to by it2</span> |
---|
205 | <span class=identifier>manual_t2</span><span class=special>::</span><span class=identifier>iterator</span> <span class=identifier>it2</span><span class=special>=...;</span> |
---|
206 | <span class=identifier>c1</span><span class=special>.</span><span class=identifier>erase</span><span class=special>(*</span><span class=identifier>it2</span><span class=special>);</span> <span class=comment>// OK: constant time</span> |
---|
207 | <span class=identifier>c2</span><span class=special>.</span><span class=identifier>erase</span><span class=special>(</span><span class=identifier>it2</span><span class=special>);</span> |
---|
208 | </pre></blockquote> |
---|
209 | |
---|
210 | <p> |
---|
211 | The construction can be extended in a straightworward manner to |
---|
212 | handle more than two indices. In what follows, we will compare |
---|
213 | instantiations of <code>multi_index_container</code> against this sort of |
---|
214 | manual simulations. |
---|
215 | </p> |
---|
216 | |
---|
217 | <h2><a name="spatial_efficiency">Spatial efficiency</a></h2> |
---|
218 | |
---|
219 | <p> |
---|
220 | The gain in space consumption of <code>multi_index_container</code> with |
---|
221 | respect to its manual simulations is amenable to a very simple |
---|
222 | theoretical analysis. For simplicity, we will ignore alignment |
---|
223 | issues (which in general play in favor of <code>multi_index_container</code>.) |
---|
224 | </p> |
---|
225 | |
---|
226 | <p> |
---|
227 | Nodes of a <code>multi_index_container</code> with <i>N</i> indices hold the value |
---|
228 | of the element plus <i>N</i> headers containing linking information for |
---|
229 | each index. Thus the node size is |
---|
230 | </p> |
---|
231 | |
---|
232 | <blockquote> |
---|
233 | <i>S<sub>I</sub></i> = <i>e</i> + <i>h</i><sub>0</sub> + ··· + |
---|
234 | <i>h</i><sub><i>N</i>-1</sub>, where<br> |
---|
235 | <i>e</i> = size of the element,<br> |
---|
236 | <i>h</i><sub><i>i</i></sub> = size of the <i>i</i>-th header. |
---|
237 | </blockquote> |
---|
238 | |
---|
239 | <p> |
---|
240 | On the other hand, the manual simulation allocates <i>N</i> nodes per |
---|
241 | element, the first holding the elements themselves and the rest |
---|
242 | storing iterators to the "base" container. In practice, an iterator |
---|
243 | merely holds a raw pointer to the node it is associated to, so its size |
---|
244 | is independent of the type of the elements. Summing all contributions, |
---|
245 | the space allocated per element in a manual simulation is |
---|
246 | </p> |
---|
247 | |
---|
248 | <blockquote> |
---|
249 | <i>S<sub>M</sub></i> = (<i>e</i> + <i>h</i><sub>0</sub>) + |
---|
250 | (<i>p</i> + <i>h</i><sub>1</sub>) + ··· + |
---|
251 | (<i>p</i> + <i>h</i><sub><i>N</i>-1</sub>) = |
---|
252 | <i>S<sub>I</sub></i> + (<i>N</i>-1)<i>p</i>, where<br> |
---|
253 | <i>p</i> = size of a pointer.<br> |
---|
254 | </blockquote> |
---|
255 | |
---|
256 | <p> |
---|
257 | The relative amount of memory taken up by <code>multi_index_container</code> |
---|
258 | with respect to its manual simulation is just |
---|
259 | <i>S<sub>I</sub></i> / <i>S<sub>M</sub></i>, which can be expressed |
---|
260 | then as: |
---|
261 | </p> |
---|
262 | |
---|
263 | <blockquote> |
---|
264 | <i>S<sub>I</sub></i> / <i>S<sub>M</sub></i> = |
---|
265 | <i>S<sub>I</sub></i> / (<i>S<sub>I</sub></i> + (<i>N</i>-1)<i>p</i>). |
---|
266 | </blockquote> |
---|
267 | |
---|
268 | <p> |
---|
269 | The formula shows that <code>multi_index_container</code> is more efficient |
---|
270 | with regard to memory consumption as the number of indices grow. An implicit |
---|
271 | assumption has been made that headers of <code>multi_index_container</code> |
---|
272 | index nodes are the same size that their analogues in STL containers; but there |
---|
273 | is a particular case in which this is often not the case: ordered indices use a |
---|
274 | <a href="tutorial/indices.html#ordered_node_compression">spatial optimization |
---|
275 | technique</a> which is not present in many implementations of |
---|
276 | <code>std::set</code>, giving an additional advantage to |
---|
277 | <code>multi_index_container</code>s of one system word per ordered index. |
---|
278 | Taking this fact into account, the former formula can be adjusted to: |
---|
279 | </p> |
---|
280 | |
---|
281 | <blockquote> |
---|
282 | <i>S<sub>I</sub></i> / <i>S<sub>M</sub></i> = |
---|
283 | <i>S<sub>I</sub></i> / (<i>S<sub>I</sub></i> + (<i>N</i>-1)<i>p</i> + <i>Ow</i>), |
---|
284 | </blockquote> |
---|
285 | |
---|
286 | <p> |
---|
287 | where <i>O</i> is the number of ordered indices of the container, and <i>w</i> |
---|
288 | is the system word size (typically 4 bytes on 32-bit architectures.) |
---|
289 | </p> |
---|
290 | |
---|
291 | <p> |
---|
292 | These considerations have overlooked an aspect of the greatest practical |
---|
293 | importance: the fact that <code>multi_index_container</code> allocates a single |
---|
294 | node per element, compared to the many nodes of different sizes |
---|
295 | built by manual simulations, diminishes memory fragmentation, which |
---|
296 | can show up in more usable memory available and better performance. |
---|
297 | </p> |
---|
298 | |
---|
299 | <h2><a name="time_efficiency">Time efficiency</a></h2> |
---|
300 | |
---|
301 | <p> |
---|
302 | From the point of view of computational complexity (i.e. big-O |
---|
303 | characterization), <code>multi_index_container</code> and its corresponding manual |
---|
304 | simulations are equivalent: inserting an element into |
---|
305 | a <code>multi_index_container</code> reduces to a simple combination of |
---|
306 | elementary insertion operations on each of the indices, and |
---|
307 | similarly for deletion. Hence, the most we can expect is a reduction |
---|
308 | (or increase) of execution time by a roughly constant factor. As we |
---|
309 | will see later, the reduction can be very significative for |
---|
310 | <code>multi_index_container</code>s with two or more indices. |
---|
311 | </p> |
---|
312 | |
---|
313 | <p>In the special case of <code>multi_index_container</code>s with only one index, |
---|
314 | resulting performance will roughly match that of the STL equivalent containers: |
---|
315 | tests show that there is at most a negligible degradation with respect to STL, |
---|
316 | and even in some cases a small improvement. |
---|
317 | </p> |
---|
318 | |
---|
319 | <h2><a name="tests">Performance tests</a></h2> |
---|
320 | |
---|
321 | <p> |
---|
322 | See <a href="../perf/test_perf.cpp">source code</a> used for measurements. |
---|
323 | <p> |
---|
324 | In order to assess the efficiency of <code>multi_index_container</code>, the following |
---|
325 | basic algorithm |
---|
326 | </p> |
---|
327 | |
---|
328 | <blockquote><pre> |
---|
329 | <span class=identifier>multi_index_container</span><span class=special><...></span> <span class=identifier>c</span><span class=special>;</span> |
---|
330 | <span class=keyword>for</span><span class=special>(</span><span class=keyword>int</span> <span class=identifier>i</span><span class=special>=</span><span class=number>0</span><span class=special>;</span><span class=identifier>i</span><span class=special><</span><span class=identifier>n</span><span class=special>;++</span><span class=identifier>i</span><span class=special>)</span><span class=identifier>c</span><span class=special>.</span><span class=identifier>insert</span><span class=special>(</span><span class=identifier>i</span><span class=special>);</span> |
---|
331 | <span class=keyword>for</span><span class=special>(</span><span class=identifier>iterator</span> <span class=identifier>it</span><span class=special>=</span><span class=identifier>c</span><span class=special>.</span><span class=identifier>begin</span><span class=special>();</span><span class=identifier>it</span><span class=special>!=</span><span class=identifier>c</span><span class=special>.</span><span class=identifier>end</span><span class=special>();)</span><span class=identifier>c</span><span class=special>.</span><span class=identifier>erase</span><span class=special>(</span><span class=identifier>it</span><span class=special>++);</span> |
---|
332 | </pre></blockquote> |
---|
333 | |
---|
334 | <p> |
---|
335 | has been measured for different instantiations of <code>multi_index_container</code> |
---|
336 | at values of <i>n</i> 1,000, 10,000 and 100,000, |
---|
337 | and its execution time compared with that of the equivalent algorithm |
---|
338 | for the corresponding manual simulation of the data structure based on |
---|
339 | STL containers. The table below describes the test environments used. |
---|
340 | </p> |
---|
341 | |
---|
342 | <p align="center"> |
---|
343 | <table cellspacing="0" cellpadding="5"> |
---|
344 | <caption><b>Tests environments.</b></caption> |
---|
345 | <tr> |
---|
346 | <th>Compiler</th> |
---|
347 | <th>Settings</th> |
---|
348 | <th>OS and CPU</th> |
---|
349 | </tr> |
---|
350 | <tr> |
---|
351 | <td>GCC 3.4.5 (mingw special)</td> |
---|
352 | <td><code>-O3</code></td> |
---|
353 | <td>Windows 2000 Pro on P4 1.5 GHz, 256 MB RAM</td> |
---|
354 | </tr> |
---|
355 | <tr class="odd_tr"> |
---|
356 | <td>Intel C++ 7.1</td> |
---|
357 | <td>default release settings</td> |
---|
358 | <td>Windows 2000 Pro on P4 1.5 GHz, 256 MB RAM</td> |
---|
359 | </tr> |
---|
360 | <tr> |
---|
361 | <td>Microsoft Visual C++ 8.0</td> |
---|
362 | <td>default release settings, <code>_SECURE_SCL=0</code></td> |
---|
363 | <td>Windows XP on P4 Xeon 3.2 GHz, 1 GB RAM</td> |
---|
364 | </tr> |
---|
365 | </table> |
---|
366 | </p> |
---|
367 | |
---|
368 | <p> |
---|
369 | The relative memory consumption (i.e. the amount of memory allocated |
---|
370 | by a <code>multi_index_container</code> with respect to its manual simulation) |
---|
371 | is determined by dividing the size of a <code>multi_index_container</code> node |
---|
372 | by the sum of node sizes of all the containers integrating the |
---|
373 | simulating data structure. |
---|
374 | </p> |
---|
375 | |
---|
376 | <h3><a name="test_1r">Results for 1 ordered index</a></h3> |
---|
377 | |
---|
378 | <p> |
---|
379 | The following instantiation of <code>multi_index_container</code> was tested: |
---|
380 | </p> |
---|
381 | |
---|
382 | <blockquote><pre> |
---|
383 | <span class=identifier>multi_index_container</span><span class=special><</span> |
---|
384 | <span class=keyword>int</span><span class=special>,</span> |
---|
385 | <span class=identifier>indexed_by</span><span class=special><</span> |
---|
386 | <span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>></span> |
---|
387 | <span class=special>></span> |
---|
388 | <span class=special>></span> |
---|
389 | </pre></blockquote> |
---|
390 | |
---|
391 | <p> |
---|
392 | which is functionally equivalent to <code>std::set<int></code>. |
---|
393 | </p> |
---|
394 | |
---|
395 | <h4><a name="memory_1r">Memory consumption</a></h4> |
---|
396 | |
---|
397 | <p align="center"> |
---|
398 | <table cellspacing="0"> |
---|
399 | <tr> |
---|
400 | <th width="33%">GCC 3.4.5</th> |
---|
401 | <th width="33%">ICC 7.1</th> |
---|
402 | <th width="33%">MSVC 8.0</th> |
---|
403 | </tr> |
---|
404 | <tr> |
---|
405 | <td align="center">80%</td> |
---|
406 | <td align="center">80%</td> |
---|
407 | <td align="center">80%</td> |
---|
408 | </tr> |
---|
409 | </table> |
---|
410 | <b>Table 1: Relative memory consumption of <code>multi_index_container</code> with 1 |
---|
411 | ordered index.</b> |
---|
412 | </p> |
---|
413 | |
---|
414 | <p> |
---|
415 | The reduction in memory usage is accounted for by the optimization technique implemented |
---|
416 | in Boost.MultiIndex ordered indices, as <a href="#spatial_efficiency">explained above</a>. |
---|
417 | </p> |
---|
418 | |
---|
419 | <h4><a name="time_1r">Execution time</a></h4> |
---|
420 | |
---|
421 | <p align="center"> |
---|
422 | <img src="perf_1o.png" alt="performance of multi_index_container with 1 ordered index" |
---|
423 | width="556" height="372"><br> |
---|
424 | <b>Fig. 1: Performance of <code>multi_index_container</code> with 1 ordered index.</b> |
---|
425 | </p> |
---|
426 | |
---|
427 | <p> |
---|
428 | Somewhat surprisingly, <code>multi_index_container</code> performs slightly |
---|
429 | better than <code>std::set</code>. A very likely explanation for this behavior |
---|
430 | is that the lower memory consumption of <code>multi_index_container</code> |
---|
431 | results in a higher processor cache hit rate. |
---|
432 | The improvement is smallest for GCC, presumably because the worse quality of |
---|
433 | this compiler's optimizer masks the cache-related benefits. |
---|
434 | </p> |
---|
435 | |
---|
436 | <h3><a name="test_1s">Results for 1 sequenced index</a></h3> |
---|
437 | |
---|
438 | <p> |
---|
439 | The following instantiation of <code>multi_index_container</code> was tested: |
---|
440 | </p> |
---|
441 | |
---|
442 | <blockquote><pre> |
---|
443 | <span class=identifier>multi_index_container</span><span class=special><</span> |
---|
444 | <span class=keyword>int</span><span class=special>,</span> |
---|
445 | <span class=identifier>indexed_by</span><span class=special><</span> |
---|
446 | <span class=identifier>sequenced</span><span class=special><></span> |
---|
447 | <span class=special>></span> |
---|
448 | <span class=special>></span> |
---|
449 | </pre></blockquote> |
---|
450 | |
---|
451 | <p> |
---|
452 | which is functionally equivalent to <code>std::list<int></code>. |
---|
453 | </p> |
---|
454 | |
---|
455 | <h4><a name="memory_1s">Memory consumption</a></h4> |
---|
456 | |
---|
457 | <p align="center"> |
---|
458 | <table cellspacing="0"> |
---|
459 | <tr> |
---|
460 | <th width="33%">GCC 3.4.5</th> |
---|
461 | <th width="33%">ICC 7.1</th> |
---|
462 | <th width="33%">MSVC 8.0</th> |
---|
463 | </tr> |
---|
464 | <tr> |
---|
465 | <td align="center">100%</td> |
---|
466 | <td align="center">100%</td> |
---|
467 | <td align="center">100%</td> |
---|
468 | </tr> |
---|
469 | </table> |
---|
470 | <b>Table 2: Relative memory consumption of <code>multi_index_container</code> with 1 |
---|
471 | sequenced index.</b> |
---|
472 | </p> |
---|
473 | |
---|
474 | <p> |
---|
475 | The figures confirm that in this case <code>multi_index_container</code> nodes are the |
---|
476 | same size than those of its <code>std::list</code> counterpart. |
---|
477 | </p> |
---|
478 | |
---|
479 | <h4><a name="time_1s">Execution time</a></h4> |
---|
480 | |
---|
481 | <p align="center"> |
---|
482 | <img src="perf_1s.png" alt="performance of multi_index_container with 1 sequenced index" |
---|
483 | width="556" height="372"><br> |
---|
484 | <b>Fig. 2: Performance of <code>multi_index_container</code> with 1 sequenced index.</b> |
---|
485 | </p> |
---|
486 | |
---|
487 | <p> |
---|
488 | <code>multi_index_container</code> does not attain the performance |
---|
489 | of its STL counterpart, although the figures are close. Again, the worst results |
---|
490 | are those of GCC, with a degradation of up to 7%, while ICC and MSVC do not |
---|
491 | exceed a mere 5%. |
---|
492 | </p> |
---|
493 | |
---|
494 | <h3><a name="test_2r">Results for 2 ordered indices</a></h3> |
---|
495 | |
---|
496 | <p> |
---|
497 | The following instantiation of <code>multi_index_container</code> was tested: |
---|
498 | </p> |
---|
499 | |
---|
500 | <blockquote><pre> |
---|
501 | <span class=identifier>multi_index_container</span><span class=special><</span> |
---|
502 | <span class=keyword>int</span><span class=special>,</span> |
---|
503 | <span class=identifier>indexed_by</span><span class=special><</span> |
---|
504 | <span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span> |
---|
505 | <span class=identifier>ordered_non_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>></span> |
---|
506 | <span class=special>></span> |
---|
507 | <span class=special>></span> |
---|
508 | </pre></blockquote> |
---|
509 | |
---|
510 | <h4><a name="memory_2r">Memory consumption</a></h4> |
---|
511 | |
---|
512 | <p align="center"> |
---|
513 | <table cellspacing="0"> |
---|
514 | <tr> |
---|
515 | <th width="33%">GCC 3.4.5</th> |
---|
516 | <th width="33%">ICC 7.1</th> |
---|
517 | <th width="33%">MSVC 8.0</th> |
---|
518 | </tr> |
---|
519 | <tr> |
---|
520 | <td align="center">70%</td> |
---|
521 | <td align="center">70%</td> |
---|
522 | <td align="center">70%</td> |
---|
523 | </tr> |
---|
524 | </table> |
---|
525 | <b>Table 3: Relative memory consumption of <code>multi_index_container</code> with 2 |
---|
526 | ordered indices.</b> |
---|
527 | </p> |
---|
528 | |
---|
529 | <p> |
---|
530 | These results concinde with the theoretical formula for |
---|
531 | <i>S<sub>I</sub></i> = 28, <i>N</i> = <i>O</i> = 2 and <i>p</i> = <i>w</i> = 4. |
---|
532 | </p> |
---|
533 | |
---|
534 | <h4><a name="time_2r">Execution time</a></h4> |
---|
535 | |
---|
536 | <p align="center"> |
---|
537 | <img src="perf_2o.png" alt="performance of multi_index_container with 2 ordered indices" |
---|
538 | width="556" height="372"><br> |
---|
539 | <b>Fig. 3: Performance of <code>multi_index_container</code> with 2 ordered indices.</b> |
---|
540 | </p> |
---|
541 | |
---|
542 | <p> |
---|
543 | The experimental results confirm our hypothesis that <code>multi_index_container</code> |
---|
544 | provides an improvement on execution time by an approximately constant factor, |
---|
545 | which in this case lies around 60%. There is no obvious explanation for the |
---|
546 | increased advantage of <code>multi_index_container</code> in MSVC for |
---|
547 | <i>n</i>=10<sup>5</sup>. |
---|
548 | </p> |
---|
549 | |
---|
550 | <h3><a name="test_1r1s">Results for 1 ordered index + 1 sequenced index</a></h3> |
---|
551 | |
---|
552 | <p> |
---|
553 | The following instantiation of <code>multi_index_container</code> was tested: |
---|
554 | </p> |
---|
555 | |
---|
556 | <blockquote><pre> |
---|
557 | <span class=identifier>multi_index_container</span><span class=special><</span> |
---|
558 | <span class=keyword>int</span><span class=special>,</span> |
---|
559 | <span class=identifier>indexed_by</span><span class=special><</span> |
---|
560 | <span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span> |
---|
561 | <span class=identifier>sequenced</span><span class=special><></span> |
---|
562 | <span class=special>></span> |
---|
563 | <span class=special>></span> |
---|
564 | </pre></blockquote> |
---|
565 | |
---|
566 | <h4><a name="memory_1r1s">Memory consumption</a></h4> |
---|
567 | |
---|
568 | <p align="center"> |
---|
569 | <table cellspacing="0"> |
---|
570 | <tr> |
---|
571 | <th width="33%">GCC 3.4.5</th> |
---|
572 | <th width="33%">ICC 7.1</th> |
---|
573 | <th width="33%">MSVC 8.0</th> |
---|
574 | </tr> |
---|
575 | <tr> |
---|
576 | <td align="center">75%</td> |
---|
577 | <td align="center">75%</td> |
---|
578 | <td align="center">75%</td> |
---|
579 | </tr> |
---|
580 | </table> |
---|
581 | <b>Table 4: Relative memory consumption of <code>multi_index_container</code> with 1 |
---|
582 | ordered index + 1 sequenced index.</b> |
---|
583 | </p> |
---|
584 | |
---|
585 | <p> |
---|
586 | These results concinde with the theoretical formula for |
---|
587 | <i>S<sub>I</sub></i> = 24, <i>N</i> = 2, <i>O</i> = 1 and <i>p</i> = <i>w</i> = 4. |
---|
588 | </p> |
---|
589 | |
---|
590 | <h4><a name="time_1r1s">Execution time</a></h4> |
---|
591 | |
---|
592 | <p align="center"> |
---|
593 | <img src="perf_1o1s.png" |
---|
594 | alt="performance of multi_index_container with 1 ordered index + 1 sequenced index" |
---|
595 | width="556" height="372"><br> |
---|
596 | <b>Fig. 4: Performance of <code>multi_index_container</code> with 1 ordered index |
---|
597 | + 1 sequenced index.</b> |
---|
598 | </p> |
---|
599 | |
---|
600 | <p> |
---|
601 | For <i>n</i>=10<sup>3</sup> and <i>n</i>=10<sup>4</sup>, the results |
---|
602 | are in agreement with our theoretical analysis, showing a constant factor |
---|
603 | improvement of 50-65% with respect to the STL-based manual simulation. |
---|
604 | Curiously enough, this speedup gets even higher when |
---|
605 | <i>n</i>=10<sup>5</sup> for two of the compilers, namely GCC and ICC. |
---|
606 | In order to rule out spurious results, the tests |
---|
607 | have been run many times, yielding similar outcoumes. Both test environments |
---|
608 | are deployed on the same machine, which points to some OS-related reason for |
---|
609 | this phenomenon. |
---|
610 | </p> |
---|
611 | |
---|
612 | <h3><a name="test_3r">Results for 3 ordered indices</a></h3> |
---|
613 | |
---|
614 | <p> |
---|
615 | The following instantiation of <code>multi_index_container</code> was tested: |
---|
616 | </p> |
---|
617 | |
---|
618 | <blockquote><pre> |
---|
619 | <span class=identifier>multi_index_container</span><span class=special><</span> |
---|
620 | <span class=keyword>int</span><span class=special>,</span> |
---|
621 | <span class=identifier>indexed_by</span><span class=special><</span> |
---|
622 | <span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span> |
---|
623 | <span class=identifier>ordered_non_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span> |
---|
624 | <span class=identifier>ordered_non_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>></span> |
---|
625 | <span class=special>></span> |
---|
626 | <span class=special>></span> |
---|
627 | </pre></blockquote> |
---|
628 | |
---|
629 | <h4><a name="memory_3r">Memory consumption</a></h4> |
---|
630 | |
---|
631 | <p align="center"> |
---|
632 | <table cellspacing="0"> |
---|
633 | <tr> |
---|
634 | <th width="33%">GCC 3.4.5</th> |
---|
635 | <th width="33%">ICC 7.1</th> |
---|
636 | <th width="33%">MSVC 8.0</th> |
---|
637 | </tr> |
---|
638 | <tr> |
---|
639 | <td align="center">66.7%</td> |
---|
640 | <td align="center">66.7%</td> |
---|
641 | <td align="center">66.7%</td> |
---|
642 | </tr> |
---|
643 | </table> |
---|
644 | <b>Table 5: Relative memory consumption of <code>multi_index_container</code> with 3 |
---|
645 | ordered indices.</b> |
---|
646 | </p> |
---|
647 | |
---|
648 | <p> |
---|
649 | These results concinde with the theoretical formula for |
---|
650 | <i>S<sub>I</sub></i> = 40, <i>N</i> = <i>O</i> = 3 and <i>p</i> = <i>w</i> = 4. |
---|
651 | </p> |
---|
652 | |
---|
653 | <h4><a name="time_3r">Execution time</a></h4> |
---|
654 | |
---|
655 | <p align="center"> |
---|
656 | <img src="perf_3o.png" alt="performance of multi_index_container with 3 ordered indices" |
---|
657 | width="556" height="372"><br> |
---|
658 | <b>Fig. 5: Performance of <code>multi_index_container</code> with 3 ordered indices.</b> |
---|
659 | </p> |
---|
660 | |
---|
661 | <p> |
---|
662 | Execution time for this case is between 45% and 55% lower than achieved with |
---|
663 | an STL-based manual simulation of the same data structure. |
---|
664 | </p> |
---|
665 | |
---|
666 | <h3><a name="test_2r1s">Results for 2 ordered indices + 1 sequenced index</a></h3> |
---|
667 | |
---|
668 | <p> |
---|
669 | The following instantiation of <code>multi_index_container</code> was tested: |
---|
670 | </p> |
---|
671 | |
---|
672 | <blockquote><pre> |
---|
673 | <span class=identifier>multi_index_container</span><span class=special><</span> |
---|
674 | <span class=keyword>int</span><span class=special>,</span> |
---|
675 | <span class=identifier>indexed_by</span><span class=special><</span> |
---|
676 | <span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span> |
---|
677 | <span class=identifier>ordered_non_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span> |
---|
678 | <span class=identifier>sequenced</span><span class=special><></span> |
---|
679 | <span class=special>></span> |
---|
680 | <span class=special>></span> |
---|
681 | </pre></blockquote> |
---|
682 | |
---|
683 | <h4><a name="memory_2r1s">Memory consumption</a></h4> |
---|
684 | |
---|
685 | <p align="center"> |
---|
686 | <table cellspacing="0"> |
---|
687 | <tr> |
---|
688 | <th width="33%">GCC 3.4.5</th> |
---|
689 | <th width="33%">ICC 7.1</th> |
---|
690 | <th width="33%">MSVC 8.0</th> |
---|
691 | </tr> |
---|
692 | <tr> |
---|
693 | <td align="center">69.2%</td> |
---|
694 | <td align="center">69.2%</td> |
---|
695 | <td align="center">69.2%</td> |
---|
696 | </tr> |
---|
697 | </table> |
---|
698 | <b>Table 6: Relative memory consumption of <code>multi_index_container</code> with 2 |
---|
699 | ordered indices + 1 sequenced index.</b> |
---|
700 | </p> |
---|
701 | |
---|
702 | <p> |
---|
703 | These results concinde with the theoretical formula for |
---|
704 | <i>S<sub>I</sub></i> = 36, <i>N</i> = 3, <i>O</i> = 2 and <i>p</i> = <i>w</i> = 4. |
---|
705 | </p> |
---|
706 | |
---|
707 | <h4><a name="time_2r1s">Execution time</a></h4> |
---|
708 | |
---|
709 | <p align="center"> |
---|
710 | <img src="perf_2o1s.png" |
---|
711 | alt="performance of multi_index_container with 2 ordered indices + 1 sequenced index" |
---|
712 | width="556" height="372"><br> |
---|
713 | <b>Fig. 6: Performance of <code>multi_index_container</code> with 2 ordered indices |
---|
714 | + 1 sequenced index.</b> |
---|
715 | </p> |
---|
716 | |
---|
717 | <p> |
---|
718 | In accordance to the expectations, execution time is improved by a fairly constant |
---|
719 | factor, which ranges from 45% to 55%. |
---|
720 | </p> |
---|
721 | |
---|
722 | <h2><a name="conclusions">Conclusions</a></h2> |
---|
723 | |
---|
724 | <p> |
---|
725 | We have shown that <code>multi_index_container</code> outperforms, both in space and |
---|
726 | time efficiency, equivalent data structures obtained from the manual |
---|
727 | combination of STL containers. This improvement gets larger when the number |
---|
728 | of indices increase. |
---|
729 | </p> |
---|
730 | |
---|
731 | <p> |
---|
732 | In the special case of replacing standard containers with single-indexed |
---|
733 | <code>multi_index_container</code>s, the performance of Boost.MultiIndex |
---|
734 | is comparable with that of the tested STL implementations, and can even yield |
---|
735 | some improvements both in space consumption and execution time. |
---|
736 | </p> |
---|
737 | |
---|
738 | <hr> |
---|
739 | |
---|
740 | <div class="prev_link"><a href="compiler_specifics.html"><img src="prev.gif" alt="compiler specifics" border="0"><br> |
---|
741 | Compiler specifics |
---|
742 | </a></div> |
---|
743 | <div class="up_link"><a href="index.html"><img src="up.gif" alt="index" border="0"><br> |
---|
744 | Index |
---|
745 | </a></div> |
---|
746 | <div class="next_link"><a href="examples.html"><img src="next.gif" alt="examples" border="0"><br> |
---|
747 | Examples |
---|
748 | </a></div><br clear="all" style="clear: all;"> |
---|
749 | |
---|
750 | <br> |
---|
751 | |
---|
752 | <p>Revised May 9th 2006</p> |
---|
753 | |
---|
754 | <p>© Copyright 2003-2006 Joaquín M López Muñoz. |
---|
755 | Distributed under the Boost Software |
---|
756 | License, Version 1.0. (See accompanying file <a href="../../../LICENSE_1_0.txt"> |
---|
757 | LICENSE_1_0.txt</a> or copy at <a href="http://www.boost.org/LICENSE_1_0.txt"> |
---|
758 | http://www.boost.org/LICENSE_1_0.txt</a>) |
---|
759 | </p> |
---|
760 | |
---|
761 | </body> |
---|
762 | </html> |
---|