1 | .. Copyright David Abrahams 2006. Distributed under the Boost |
---|
2 | .. Software License, Version 1.0. (See accompanying |
---|
3 | .. file LICENSE_1_0.txt or copy at |
---|
4 | .. http://www.boost.org/LICENSE_1_0.txt) |
---|
5 | |
---|
6 | How Runtime Polymorphism is expressed in Boost.Python: |
---|
7 | ----------------------------------------------------- |
---|
8 | |
---|
9 | struct A { virtual std::string f(); virtual ~A(); }; |
---|
10 | |
---|
11 | std::string call_f(A& x) { return x.f(); } |
---|
12 | |
---|
13 | struct B { virtual std::string f() { return "B"; } }; |
---|
14 | |
---|
15 | struct Bcb : B |
---|
16 | { |
---|
17 | Bcb(PyObject* self) : m_self(self) {} |
---|
18 | |
---|
19 | virtual std::string f() { return call_method<std::string>(m_sef, "f"); } |
---|
20 | static std::string f_default(B& b) { return b.B::f(); } |
---|
21 | |
---|
22 | PyObject* m_self; |
---|
23 | }; |
---|
24 | |
---|
25 | struct C : B |
---|
26 | { |
---|
27 | virtual std::string f() { return "C"; } |
---|
28 | }; |
---|
29 | |
---|
30 | >>> class D(B): |
---|
31 | ... def f(): |
---|
32 | ... return 'D' |
---|
33 | ... |
---|
34 | >>> class E(B): pass |
---|
35 | ... |
---|
36 | |
---|
37 | |
---|
38 | When we write, "invokes B::f non-virtually", we mean: |
---|
39 | |
---|
40 | void g(B& x) { x.B::f(); } |
---|
41 | |
---|
42 | This will call B::f() regardless of the dynamic type of x. Any other |
---|
43 | way of invoking B::f, including through a function pointer, is a |
---|
44 | "virtual invocation", and will call the most-derived override of f(). |
---|
45 | |
---|
46 | Case studies |
---|
47 | |
---|
48 | C++\Python class |
---|
49 | \___A_____B_____C_____D____E___ |
---|
50 | | |
---|
51 | A | 1 |
---|
52 | | |
---|
53 | B | 2 3 |
---|
54 | | |
---|
55 | Bcb | 4 5 6 |
---|
56 | | |
---|
57 | C | 7 8 |
---|
58 | | |
---|
59 | |
---|
60 | |
---|
61 | 1. Simple case |
---|
62 | |
---|
63 | 2. Python A holds a B*. Probably won't happen once we have forced |
---|
64 | downcasting. |
---|
65 | |
---|
66 | Requires: |
---|
67 | x.f() -> 'B' |
---|
68 | call_f(x) -> 'B' |
---|
69 | |
---|
70 | Implies: A.f invokes A::f() (virtually or otherwise) |
---|
71 | |
---|
72 | 3. Python B holds a B*. |
---|
73 | |
---|
74 | Requires: |
---|
75 | x.f() -> 'B' |
---|
76 | call_f(x) -> 'B' |
---|
77 | |
---|
78 | Implies: B.f invokes B::f (virtually or otherwise) |
---|
79 | |
---|
80 | |
---|
81 | 4. B constructed from Python |
---|
82 | |
---|
83 | Requires: |
---|
84 | |
---|
85 | x.f() -> 'B' |
---|
86 | call_f(x) -> 'B' |
---|
87 | |
---|
88 | Implies: B.f invokes B::f non-virtually. Bcb::f invokes B::f |
---|
89 | non-virtually. |
---|
90 | |
---|
91 | Question: Does it help if we arrange for Python B construction to |
---|
92 | build a true B object? Then this case doesn't arise. |
---|
93 | |
---|
94 | |
---|
95 | 5. D is a Python class derived from B |
---|
96 | |
---|
97 | Requires: |
---|
98 | |
---|
99 | x.f() -> 'D' |
---|
100 | call_f(x) -> 'D' |
---|
101 | |
---|
102 | Implies: Bcb::f must invoke call_method to look up the Python |
---|
103 | method override, otherwise call_f wouldn't work. |
---|
104 | |
---|
105 | 6. E is like D, but doesn't override f |
---|
106 | |
---|
107 | Requires: |
---|
108 | |
---|
109 | x.f() -> 'B' |
---|
110 | call_f(x) -> 'B' |
---|
111 | |
---|
112 | Implies: B.f invokes B::f non-virtually. If it were virtual, x.f() |
---|
113 | would cause infinite recursion, because we've already |
---|
114 | determined that Bcb::f must invoke call_method to look up |
---|
115 | the Python method override. |
---|
116 | |
---|
117 | 7. Python B object holds a C* |
---|
118 | |
---|
119 | Requires: |
---|
120 | |
---|
121 | x.f() -> 'C' |
---|
122 | call_f(x) -> 'C' |
---|
123 | |
---|
124 | Implies: B.f invokes B::f virtually. |
---|
125 | |
---|
126 | 8. C object constructed from Python |
---|
127 | |
---|
128 | Requires: |
---|
129 | |
---|
130 | x.f() -> 'C' |
---|
131 | call_f(x) -> 'C' |
---|
132 | |
---|
133 | Implies: nothing new. |
---|
134 | |
---|
135 | ------ |
---|
136 | |
---|
137 | Total implications: |
---|
138 | |
---|
139 | 2: A.f invokes A::f() (virtually or otherwise) |
---|
140 | 3: B.f invokes B::f (virtually or otherwise) |
---|
141 | 4: B.f invokes B::f non-virtually. Bcb::f invokes B::f non-virtually |
---|
142 | 6: B.f invokes B::f non-virtually. |
---|
143 | 7: B.f invokes B::f virtually. |
---|
144 | |
---|
145 | 5: Bcb::f invokes call_method to look up the Python method |
---|
146 | |
---|
147 | Though (4) is avoidable, clearly 6 and 7 are not, and they |
---|
148 | conflict. The implication is that B.f must choose its behavior |
---|
149 | according to the type of the contained C++ object. If it is Bcb, a |
---|
150 | non-virtual call to B::f must occur. Otherwise, a virtual call to B::f |
---|
151 | must occur. This is essentially the same scheme we had with |
---|
152 | Boost.Python v1. |
---|
153 | |
---|
154 | Note: in early versions of Boost.Python v1, we solved this problem by |
---|
155 | introducing a new Python class in the hierarchy, so that D and E |
---|
156 | actually derive from a B', and B'.f invokes B::f non-virtually, while |
---|
157 | B.f invokes B::f virtually. However, people complained about the |
---|
158 | artificial class in the hierarchy, which was revealed when they tried |
---|
159 | to do normal kinds of Python introspection. |
---|
160 | |
---|
161 | ------- |
---|
162 | |
---|
163 | Assumption: we will have a function which builds a virtual function |
---|
164 | dispatch callable Python object. |
---|
165 | |
---|
166 | make_virtual_function(pvmf, default_impl, call_policies, dispatch_type) |
---|
167 | |
---|
168 | Pseudocode: |
---|
169 | |
---|
170 | Get first argument from Python arg tuple |
---|
171 | if it contains dispatch_type |
---|
172 | call default_impl |
---|
173 | else |
---|
174 | call through pvmf |
---|
175 | |
---|
176 | |
---|
177 | Open questions: |
---|
178 | |
---|
179 | 1. What about Python multiple inheritance? Do we have the right |
---|
180 | check in the if clause above? |
---|
181 | |
---|
182 | A: Not quite. The correct test looks like: |
---|
183 | |
---|
184 | Deduce target type of pvmf, i.e. T in R(T::*)(A1...AN). |
---|
185 | Find holder in first argument which holds T |
---|
186 | if it holds dispatch_type... |
---|
187 | |
---|
188 | 2. Can we make this more efficient? |
---|
189 | |
---|
190 | The current "returning" mechanism will look up a holder for T |
---|
191 | again. I don't know if we know how to avoid that. |
---|
192 | |
---|
193 | |
---|
194 | OK, the solution involves reworking the call mechanism. This is |
---|
195 | neccesary anyway in order to enable wrapping of function objects. |
---|
196 | |
---|
197 | It can result in a reduction in the overall amount of source code, |
---|
198 | because returning<> won't need to be specialized for every |
---|
199 | combination of function and member function... though it will still |
---|
200 | need a void specialization. We will still need a way to dispatch to |
---|
201 | member functions through a regular function interface. mem_fn is |
---|
202 | almost the right tool, but it only goes up to 8 |
---|
203 | arguments. Forwarding is tricky if you don't want to incur copies. |
---|
204 | I think the trick is to use arg_from_python<T>::result_type for each |
---|
205 | argument to the forwarder. |
---|
206 | |
---|
207 | Another option would be to use separate function, function object, |
---|
208 | and member function dispatchers. Once you know you have a member |
---|
209 | function, you don't need cv-qualified overloads to call it. |
---|
210 | |
---|
211 | Hmm, while we're at this, maybe we should solve the write-back |
---|
212 | converter problem. Can we do it? Maybe not. Ralf doesn't want to |
---|
213 | write special write-back functions here, does he? He wants the |
---|
214 | converter to do the work automatically. We could add |
---|
215 | cleanup/destructor registration. That would relieve the client from |
---|
216 | having accessible destructors for types which are being converted by |
---|
217 | rvalue. I'm not sure that this will really save any code, |
---|
218 | however. It rather depends on the linker, doesn't it? I wonder if |
---|
219 | this can be done in a backwards-compatible fashion by generating the |
---|
220 | delete function when it's not supplied? |
---|
221 | |
---|
222 | |
---|