1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
---|
2 | <html> |
---|
3 | <head> |
---|
4 | <title>Smart Pointer Programming Techniques</title> |
---|
5 | <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> |
---|
6 | </head> |
---|
7 | <body text="#000000" bgColor="#ffffff"> |
---|
8 | <h1><A href="../../index.htm"><IMG height="86" alt="boost.png (6897 bytes)" src="../../boost.png" width="277" align="middle" |
---|
9 | border="0"></A>Smart Pointer Programming Techniques</h1> |
---|
10 | <p><A href="#incomplete">Using incomplete classes for implementation hiding</A><br> |
---|
11 | <A href="#pimpl">The "Pimpl" idiom</A><br> |
---|
12 | <A href="#abstract">Using abstract classes for implementation hiding</A><br> |
---|
13 | <A href="#preventing_delete">Preventing <code>delete px.get()</code></A><br> |
---|
14 | <A href="#array">Using a <code>shared_ptr</code> to hold a pointer to an array</A><br> |
---|
15 | <A href="#encapsulation">Encapsulating allocation details, wrapping factory |
---|
16 | functions</A><br> |
---|
17 | <A href="#static">Using a <code>shared_ptr</code> to hold a pointer to a statically |
---|
18 | allocated object</A><br> |
---|
19 | <A href="#com">Using a <code>shared_ptr</code> to hold a pointer to a COM object</A><br> |
---|
20 | <A href="#intrusive">Using a <code>shared_ptr</code> to hold a pointer to an object |
---|
21 | with an embedded reference count</A><br> |
---|
22 | <A href="#another_sp">Using a <code>shared_ptr</code> to hold another shared |
---|
23 | ownership smart pointer</A><br> |
---|
24 | <A href="#from_raw">Obtaining a <code>shared_ptr</code> from a raw pointer</A><br> |
---|
25 | <A href="#in_constructor">Obtaining a <code>shared_ptr</code> (<code>weak_ptr</code>) |
---|
26 | to <code>this</code> in a constructor</A><br> |
---|
27 | <A href="#from_this">Obtaining a <code>shared_ptr</code> to <code>this</code></A><br> |
---|
28 | <A href="#handle">Using <code>shared_ptr</code> as a smart counted handle</A><br> |
---|
29 | <A href="#on_block_exit">Using <code>shared_ptr</code> to execute code on block |
---|
30 | exit</A><br> |
---|
31 | <A href="#pvoid">Using <code>shared_ptr<void></code> to hold an arbitrary |
---|
32 | object</A><br> |
---|
33 | <A href="#extra_data">Associating arbitrary data with heterogeneous <code>shared_ptr</code> |
---|
34 | instances</A><br> |
---|
35 | <A href="#as_lock">Using <code>shared_ptr</code> as a CopyConstructible mutex lock</A><br> |
---|
36 | <A href="#wrapper">Using <code>shared_ptr</code> to wrap member function calls</A><br> |
---|
37 | <A href="#delayed">Delayed deallocation</A><br> |
---|
38 | <A href="#weak_without_shared">Weak pointers to objects not managed by a <code>shared_ptr</code></A><br> |
---|
39 | </p> |
---|
40 | <h2><A name="incomplete">Using incomplete classes for implementation hiding</A></h2> |
---|
41 | <p>A proven technique (that works in C, too) for separating interface from |
---|
42 | implementation is to use a pointer to an incomplete class as an opaque handle:</p> |
---|
43 | <pre>class FILE; |
---|
44 | |
---|
45 | FILE * fopen(char const * name, char const * mode); |
---|
46 | void fread(FILE * f, void * data, size_t size); |
---|
47 | void fclose(FILE * f); |
---|
48 | </pre> |
---|
49 | <p>It is possible to express the above interface using <code>shared_ptr</code>, |
---|
50 | eliminating the need to manually call <code>fclose</code>:</p> |
---|
51 | <pre>class FILE; |
---|
52 | |
---|
53 | shared_ptr<FILE> fopen(char const * name, char const * mode); |
---|
54 | void fread(shared_ptr<FILE> f, void * data, size_t size); |
---|
55 | </pre> |
---|
56 | <p>This technique relies on <code>shared_ptr</code>'s ability to execute a custom |
---|
57 | deleter, eliminating the explicit call to <code>fclose</code>, and on the fact |
---|
58 | that <code>shared_ptr<X></code> can be copied and destroyed when <code>X</code> |
---|
59 | is incomplete.</p> |
---|
60 | <h2><A name="pimpl">The "Pimpl" idiom</A></h2> |
---|
61 | <p>A C++ specific variation of the incomplete class pattern is the "Pimpl" idiom. |
---|
62 | The incomplete class is not exposed to the user; it is hidden behind a |
---|
63 | forwarding facade. <code>shared_ptr</code> can be used to implement a "Pimpl":</p> |
---|
64 | <pre>// file.hpp: |
---|
65 | |
---|
66 | class file |
---|
67 | { |
---|
68 | private: |
---|
69 | |
---|
70 | class impl; |
---|
71 | shared_ptr<impl> pimpl_; |
---|
72 | |
---|
73 | public: |
---|
74 | |
---|
75 | file(char const * name, char const * mode); |
---|
76 | |
---|
77 | // compiler generated members are fine and useful |
---|
78 | |
---|
79 | void read(void * data, size_t size); |
---|
80 | }; |
---|
81 | </pre> |
---|
82 | <pre>// file.cpp: |
---|
83 | |
---|
84 | #include "file.hpp" |
---|
85 | |
---|
86 | class file::impl |
---|
87 | { |
---|
88 | private: |
---|
89 | |
---|
90 | impl(impl const &); |
---|
91 | impl & operator=(impl const &); |
---|
92 | |
---|
93 | // private data |
---|
94 | |
---|
95 | public: |
---|
96 | |
---|
97 | impl(char const * name, char const * mode) { ... } |
---|
98 | ~impl() { ... } |
---|
99 | void read(void * data, size_t size) { ... } |
---|
100 | }; |
---|
101 | |
---|
102 | file::file(char const * name, char const * mode): pimpl_(new impl(name, mode)) |
---|
103 | { |
---|
104 | } |
---|
105 | |
---|
106 | void file::read(void * data, size_t size) |
---|
107 | { |
---|
108 | pimpl_->read(data, size); |
---|
109 | } |
---|
110 | </pre> |
---|
111 | <p>The key thing to note here is that the compiler-generated copy constructor, |
---|
112 | assignment operator, and destructor all have a sensible meaning. As a result, <code> |
---|
113 | file</code> is <code>CopyConstructible</code> and <code>Assignable</code>, |
---|
114 | allowing its use in standard containers.</p> |
---|
115 | <h2><A name="abstract">Using abstract classes for implementation hiding</A></h2> |
---|
116 | <p>Another widely used C++ idiom for separating inteface and implementation is to |
---|
117 | use abstract base classes and factory functions. The abstract classes are |
---|
118 | sometimes called "interfaces" and the pattern is known as "interface-based |
---|
119 | programming". Again, <code>shared_ptr</code> can be used as the return type of |
---|
120 | the factory functions:</p> |
---|
121 | <pre>// X.hpp: |
---|
122 | |
---|
123 | class X |
---|
124 | { |
---|
125 | public: |
---|
126 | |
---|
127 | virtual void f() = 0; |
---|
128 | virtual void g() = 0; |
---|
129 | |
---|
130 | protected: |
---|
131 | |
---|
132 | ~X() {} |
---|
133 | }; |
---|
134 | |
---|
135 | shared_ptr<X> createX(); |
---|
136 | </pre> |
---|
137 | <pre>-- X.cpp: |
---|
138 | |
---|
139 | class X_impl: public X |
---|
140 | { |
---|
141 | private: |
---|
142 | |
---|
143 | X_impl(X_impl const &); |
---|
144 | X_impl & operator=(X_impl const &); |
---|
145 | |
---|
146 | public: |
---|
147 | |
---|
148 | virtual void f() |
---|
149 | { |
---|
150 | // ... |
---|
151 | } |
---|
152 | |
---|
153 | virtual void g() |
---|
154 | { |
---|
155 | // ... |
---|
156 | } |
---|
157 | }; |
---|
158 | |
---|
159 | shared_ptr<X> createX() |
---|
160 | { |
---|
161 | shared_ptr<X> px(new X_impl); |
---|
162 | return px; |
---|
163 | } |
---|
164 | </pre> |
---|
165 | <p>A key property of shared_ptr is that the allocation, construction, deallocation, |
---|
166 | and destruction details are captured at the point of construction, inside the |
---|
167 | factory function. Note the protected and nonvirtual destructor in the example |
---|
168 | above. The client code cannot, and does not need to, delete a pointer to <code>X</code>; |
---|
169 | the <code>shared_ptr<X></code> instance returned from <code>createX</code> |
---|
170 | will correctly call <code>~X_impl</code>.</p> |
---|
171 | <h2><A name="preventing_delete">Preventing <code>delete px.get()</code></A></h2> |
---|
172 | <p>It is often desirable to prevent client code from deleting a pointer that is |
---|
173 | being managed by <code>shared_ptr</code>. The previous technique showed one |
---|
174 | possible approach, using a protected destructor. Another alternative is to use |
---|
175 | a private deleter:</p> |
---|
176 | <pre>class X |
---|
177 | { |
---|
178 | private: |
---|
179 | |
---|
180 | ~X(); |
---|
181 | |
---|
182 | class deleter; |
---|
183 | friend class deleter; |
---|
184 | |
---|
185 | class deleter |
---|
186 | { |
---|
187 | public: |
---|
188 | |
---|
189 | void operator()(X * p) { delete p; } |
---|
190 | }; |
---|
191 | |
---|
192 | public: |
---|
193 | |
---|
194 | static shared_ptr<X> create() |
---|
195 | { |
---|
196 | shared_ptr<X> px(new X, X::deleter()); |
---|
197 | return px; |
---|
198 | } |
---|
199 | }; |
---|
200 | </pre> |
---|
201 | <h2><A name="array">Using a <code>shared_ptr</code> to hold a pointer to an array</A></h2> |
---|
202 | <p>A <code>shared_ptr</code> can be used to hold a pointer to an array allocated |
---|
203 | with <code>new[]</code>:</p> |
---|
204 | <pre>shared_ptr<X> px(new X[1], <A href="../utility/checked_delete.html" >checked_array_deleter</A><X>()); |
---|
205 | </pre> |
---|
206 | <p>Note, however, that <code><A href="shared_array.htm">shared_array</A></code> is |
---|
207 | often preferable, if this is an option. It has an array-specific interface, |
---|
208 | without <code>operator*</code> and <code>operator-></code>, and does not |
---|
209 | allow pointer conversions.</p> |
---|
210 | <h2><A name="encapsulation">Encapsulating allocation details, wrapping factory |
---|
211 | functions</A></h2> |
---|
212 | <p><code>shared_ptr</code> can be used in creating C++ wrappers over existing C |
---|
213 | style library interfaces that return raw pointers from their factory functions |
---|
214 | to encapsulate allocation details. As an example, consider this interface, |
---|
215 | where <code>CreateX</code> might allocate <code>X</code> from its own private |
---|
216 | heap, <code>~X</code> may be inaccessible, or <code>X</code> may be incomplete:</p> |
---|
217 | <pre>X * CreateX(); |
---|
218 | void DestroyX(X *); |
---|
219 | </pre> |
---|
220 | <p>The only way to reliably destroy a pointer returned by <code>CreateX</code> is |
---|
221 | to call <code>DestroyX</code>.</p> |
---|
222 | <P>Here is how a <code>shared_ptr</code>-based wrapper may look like:</P> |
---|
223 | <pre>shared_ptr<X> createX() |
---|
224 | { |
---|
225 | shared_ptr<X> px(CreateX(), DestroyX); |
---|
226 | return px; |
---|
227 | } |
---|
228 | </pre> |
---|
229 | <p>Client code that calls <code>createX</code> still does not need to know how the |
---|
230 | object has been allocated, but now the destruction is automatic.</p> |
---|
231 | <h2><A name="static">Using a <code>shared_ptr</code> to hold a pointer to a statically |
---|
232 | allocated object</A></h2> |
---|
233 | <p>Sometimes it is desirable to create a <code>shared_ptr</code> to an already |
---|
234 | existing object, so that the <code>shared_ptr</code> does not attempt to |
---|
235 | destroy the object when there are no more references left. As an example, the |
---|
236 | factory function:</p> |
---|
237 | <pre>shared_ptr<X> createX(); |
---|
238 | </pre> |
---|
239 | <p>in certain situations may need to return a pointer to a statically allocated <code>X</code> |
---|
240 | instance.</p> |
---|
241 | <P>The solution is to use a custom deleter that does nothing:</P> |
---|
242 | <pre>struct null_deleter |
---|
243 | { |
---|
244 | void operator()(void const *) const |
---|
245 | { |
---|
246 | } |
---|
247 | }; |
---|
248 | |
---|
249 | static X x; |
---|
250 | |
---|
251 | shared_ptr<X> createX() |
---|
252 | { |
---|
253 | shared_ptr<X> px(&x, null_deleter()); |
---|
254 | return px; |
---|
255 | } |
---|
256 | </pre> |
---|
257 | <p>The same technique works for any object known to outlive the pointer.</p> |
---|
258 | <h2><A name="com">Using a <code>shared_ptr</code> to hold a pointer to a COM Object</A></h2> |
---|
259 | <p>Background: COM objects have an embedded reference count and two member |
---|
260 | functions that manipulate it. <code>AddRef()</code> increments the count. <code>Release()</code> |
---|
261 | decrements the count and destroys itself when the count drops to zero.</p> |
---|
262 | <P>It is possible to hold a pointer to a COM object in a <code>shared_ptr</code>:</P> |
---|
263 | <pre>shared_ptr<IWhatever> make_shared_from_COM(IWhatever * p) |
---|
264 | { |
---|
265 | p->AddRef(); |
---|
266 | shared_ptr<IWhatever> pw(p, <A href="../bind/mem_fn.html" >mem_fn</A>(&IWhatever::Release)); |
---|
267 | return pw; |
---|
268 | } |
---|
269 | </pre> |
---|
270 | <p>Note, however, that <code>shared_ptr</code> copies created from <code>pw</code> will |
---|
271 | not "register" in the embedded count of the COM object; they will share the |
---|
272 | single reference created in <code>make_shared_from_COM</code>. Weak pointers |
---|
273 | created from <code>pw</code> will be invalidated when the last <code>shared_ptr</code> |
---|
274 | is destroyed, regardless of whether the COM object itself is still alive.</p> |
---|
275 | <P>As <A href="../bind/mem_fn.html#Q3">explained</A> in the <code>mem_fn</code> documentation, |
---|
276 | you need to <A href="../bind/mem_fn.html#stdcall">#define |
---|
277 | BOOST_MEM_FN_ENABLE_STDCALL</A> first.</P> |
---|
278 | <h2><A name="intrusive">Using a <code>shared_ptr</code> to hold a pointer to an object |
---|
279 | with an embedded reference count</A></h2> |
---|
280 | <p>This is a generalization of the above technique. The example assumes that the |
---|
281 | object implements the two functions required by <code><A href="intrusive_ptr.html">intrusive_ptr</A></code>, |
---|
282 | <code>intrusive_ptr_add_ref</code> and <code>intrusive_ptr_release</code>:</p> |
---|
283 | <pre>template<class T> struct intrusive_deleter |
---|
284 | { |
---|
285 | void operator()(T * p) |
---|
286 | { |
---|
287 | if(p) intrusive_ptr_release(p); |
---|
288 | } |
---|
289 | }; |
---|
290 | |
---|
291 | shared_ptr<X> make_shared_from_intrusive(X * p) |
---|
292 | { |
---|
293 | if(p) intrusive_ptr_add_ref(p); |
---|
294 | shared_ptr<X> px(p, intrusive_deleter<X>()); |
---|
295 | return px; |
---|
296 | } |
---|
297 | </pre> |
---|
298 | <h2><A name="another_sp">Using a <code>shared_ptr</code> to hold another shared |
---|
299 | ownership smart pointer</A></h2> |
---|
300 | <p>One of the design goals of <code>shared_ptr</code> is to be used in library |
---|
301 | interfaces. It is possible to encounter a situation where a library takes a <code>shared_ptr</code> |
---|
302 | argument, but the object at hand is being managed by a different reference |
---|
303 | counted or linked smart pointer.</p> |
---|
304 | <P>It is possible to exploit <code>shared_ptr</code>'s custom deleter feature to |
---|
305 | wrap this existing smart pointer behind a <code>shared_ptr</code> facade:</P> |
---|
306 | <pre>template<class P> struct smart_pointer_deleter |
---|
307 | { |
---|
308 | private: |
---|
309 | |
---|
310 | P p_; |
---|
311 | |
---|
312 | public: |
---|
313 | |
---|
314 | smart_pointer_deleter(P const & p): p_(p) |
---|
315 | { |
---|
316 | } |
---|
317 | |
---|
318 | void operator()(void const *) |
---|
319 | { |
---|
320 | p_.reset(); |
---|
321 | } |
---|
322 | |
---|
323 | P const & get() const |
---|
324 | { |
---|
325 | return p_; |
---|
326 | } |
---|
327 | }; |
---|
328 | |
---|
329 | shared_ptr<X> make_shared_from_another(another_ptr<X> qx) |
---|
330 | { |
---|
331 | shared_ptr<X> px(qx.get(), smart_pointer_deleter< another_ptr<X> >(qx)); |
---|
332 | return px; |
---|
333 | } |
---|
334 | </pre> |
---|
335 | <p>One subtle point is that deleters are not allowed to throw exceptions, and the |
---|
336 | above example as written assumes that <code>p_.reset()</code> doesn't throw. If |
---|
337 | this is not the case, <code>p_.reset()</code> should be wrapped in a <code>try {} |
---|
338 | catch(...) {}</code> block that ignores exceptions. In the (usually |
---|
339 | unlikely) event when an exception is thrown and ignored, <code>p_</code> will |
---|
340 | be released when the lifetime of the deleter ends. This happens when all |
---|
341 | references, including weak pointers, are destroyed or reset.</p> |
---|
342 | <P>Another twist is that it is possible, given the above <code>shared_ptr</code> instance, |
---|
343 | to recover the original smart pointer, using <code><A href="shared_ptr.htm#get_deleter"> |
---|
344 | get_deleter</A></code>:</P> |
---|
345 | <pre>void extract_another_from_shared(shared_ptr<X> px) |
---|
346 | { |
---|
347 | typedef smart_pointer_deleter< another_ptr<X> > deleter; |
---|
348 | |
---|
349 | if(deleter const * pd = get_deleter<deleter>(px)) |
---|
350 | { |
---|
351 | another_ptr<X> qx = pd->get(); |
---|
352 | } |
---|
353 | else |
---|
354 | { |
---|
355 | // not one of ours |
---|
356 | } |
---|
357 | } |
---|
358 | </pre> |
---|
359 | <h2><A name="from_raw">Obtaining a <code>shared_ptr</code> from a raw pointer</A></h2> |
---|
360 | <p>Sometimes it is necessary to obtain a <code>shared_ptr</code> given a raw |
---|
361 | pointer to an object that is already managed by another <code>shared_ptr</code> |
---|
362 | instance. Example:</p> |
---|
363 | <pre>void f(X * p) |
---|
364 | { |
---|
365 | shared_ptr<X> px(<i>???</i>); |
---|
366 | } |
---|
367 | </pre> |
---|
368 | <p>Inside <code>f</code>, we'd like to create a <code>shared_ptr</code> to <code>*p</code>.</p> |
---|
369 | <P>In the general case, this problem has no solution. One approach is to modify <code>f</code> |
---|
370 | to take a <code>shared_ptr</code>, if possible:</P> |
---|
371 | <pre>void f(shared_ptr<X> px); |
---|
372 | </pre> |
---|
373 | <p>The same transformation can be used for nonvirtual member functions, to convert |
---|
374 | the implicit <code>this</code>:</p> |
---|
375 | <pre>void X::f(int m); |
---|
376 | </pre> |
---|
377 | <p>would become a free function with a <code>shared_ptr</code> first argument:</p> |
---|
378 | <pre>void f(shared_ptr<X> this_, int m); |
---|
379 | </pre> |
---|
380 | <p>If <code>f</code> cannot be changed, but <code>X</code> uses intrusive counting, |
---|
381 | use <code><A href="#intrusive">make_shared_from_intrusive</A></code> described |
---|
382 | above. Or, if it's known that the <code>shared_ptr</code> created in <code>f</code> |
---|
383 | will never outlive the object, use <A href="#static">a null deleter</A>.</p> |
---|
384 | <h2><A name="in_constructor">Obtaining a <code>shared_ptr</code> (<code>weak_ptr</code>) |
---|
385 | to <code>this</code> in a constructor</A></h2> |
---|
386 | <p>Some designs require objects to register themselves on construction with a |
---|
387 | central authority. When the registration routines take a shared_ptr, this leads |
---|
388 | to the question how could a constructor obtain a shared_ptr to this:</p> |
---|
389 | <pre>class X |
---|
390 | { |
---|
391 | public: |
---|
392 | |
---|
393 | X() |
---|
394 | { |
---|
395 | shared_ptr<X> this_(<i>???</i>); |
---|
396 | } |
---|
397 | }; |
---|
398 | </pre> |
---|
399 | <p>In the general case, the problem cannot be solved. The <code>X</code> instance |
---|
400 | being constructed can be an automatic variable or a static variable; it can be |
---|
401 | created on the heap:</p> |
---|
402 | <pre>shared_ptr<X> px(new X);</pre> |
---|
403 | <P>but at construction time, <code>px</code> does not exist yet, and it is |
---|
404 | impossible to create another <code>shared_ptr</code> instance that shares |
---|
405 | ownership with it.</P> |
---|
406 | <P>Depending on context, if the inner <code>shared_ptr</code> <code>this_</code> doesn't |
---|
407 | need to keep the object alive, use a <code>null_deleter</code> as explained <A href="#static"> |
---|
408 | here</A> and <A href="#weak_without_shared">here</A>. If <code>X</code> is |
---|
409 | supposed to always live on the heap, and be managed by a <code>shared_ptr</code>, |
---|
410 | use a static factory function:</P> |
---|
411 | <pre>class X |
---|
412 | { |
---|
413 | private: |
---|
414 | |
---|
415 | X() { ... } |
---|
416 | |
---|
417 | public: |
---|
418 | |
---|
419 | static shared_ptr<X> create() |
---|
420 | { |
---|
421 | shared_ptr<X> px(new X); |
---|
422 | // use px as 'this_' |
---|
423 | return px; |
---|
424 | } |
---|
425 | }; |
---|
426 | </pre> |
---|
427 | <h2><A name="from_this">Obtaining a <code>shared_ptr</code> to <code>this</code></A></h2> |
---|
428 | <p>Sometimes it is needed to obtain a <code>shared_ptr</code> from <code>this</code> |
---|
429 | in a virtual member function under the assumption that <code>this</code> is |
---|
430 | already managed by a <code>shared_ptr</code>. The transformations <A href="#from_raw"> |
---|
431 | described in the previous technique</A> cannot be applied.</p> |
---|
432 | <P>A typical example:</P> |
---|
433 | <pre>class X |
---|
434 | { |
---|
435 | public: |
---|
436 | |
---|
437 | virtual void f() = 0; |
---|
438 | |
---|
439 | protected: |
---|
440 | |
---|
441 | ~X() {} |
---|
442 | }; |
---|
443 | |
---|
444 | class Y |
---|
445 | { |
---|
446 | public: |
---|
447 | |
---|
448 | virtual shared_ptr<X> getX() = 0; |
---|
449 | |
---|
450 | protected: |
---|
451 | |
---|
452 | ~Y() {} |
---|
453 | }; |
---|
454 | |
---|
455 | // -- |
---|
456 | |
---|
457 | class impl: public X, public Y |
---|
458 | { |
---|
459 | public: |
---|
460 | |
---|
461 | impl() { ... } |
---|
462 | |
---|
463 | virtual void f() { ... } |
---|
464 | |
---|
465 | virtual shared_ptr<X> getX() |
---|
466 | { |
---|
467 | shared_ptr<X> px(<i>???</i>); |
---|
468 | return px; |
---|
469 | } |
---|
470 | }; |
---|
471 | </pre> |
---|
472 | <p>The solution is to keep a weak pointer to <code>this</code> as a member in <code>impl</code>:</p> |
---|
473 | <pre>class impl: public X, public Y |
---|
474 | { |
---|
475 | private: |
---|
476 | |
---|
477 | weak_ptr<impl> weak_this; |
---|
478 | |
---|
479 | impl(impl const &); |
---|
480 | impl & operator=(impl const &); |
---|
481 | |
---|
482 | impl() { ... } |
---|
483 | |
---|
484 | public: |
---|
485 | |
---|
486 | static shared_ptr<impl> create() |
---|
487 | { |
---|
488 | shared_ptr<impl> pi(new impl); |
---|
489 | pi->weak_this = pi; |
---|
490 | return pi; |
---|
491 | } |
---|
492 | |
---|
493 | virtual void f() { ... } |
---|
494 | |
---|
495 | virtual shared_ptr<X> getX() |
---|
496 | { |
---|
497 | shared_ptr<X> px(weak_this); |
---|
498 | return px; |
---|
499 | } |
---|
500 | }; |
---|
501 | </pre> |
---|
502 | <p>The library now includes a helper class template <code><A href="enable_shared_from_this.html"> |
---|
503 | enable_shared_from_this</A></code> that can be used to encapsulate the |
---|
504 | solution:</p> |
---|
505 | <pre>class impl: public X, public Y, public enable_shared_from_this<impl> |
---|
506 | { |
---|
507 | public: |
---|
508 | |
---|
509 | impl(impl const &); |
---|
510 | impl & operator=(impl const &); |
---|
511 | |
---|
512 | public: |
---|
513 | |
---|
514 | virtual void f() { ... } |
---|
515 | |
---|
516 | virtual shared_ptr<X> getX() |
---|
517 | { |
---|
518 | return shared_from_this(); |
---|
519 | } |
---|
520 | } |
---|
521 | </pre> |
---|
522 | <p>Note that you no longer need to manually initialize the <code>weak_ptr</code> member |
---|
523 | in <code><A href="enable_shared_from_this.html">enable_shared_from_this</A></code>. |
---|
524 | Constructing a <code>shared_ptr</code> to <code>impl</code> takes care of that.</p> |
---|
525 | <h2><A name="handle">Using <code>shared_ptr</code> as a smart counted handle</A></h2> |
---|
526 | <p>Some library interfaces use opaque handles, a variation of the <A href="#incomplete"> |
---|
527 | incomplete class technique</A> described above. An example:</p> |
---|
528 | <pre>typedef void * HANDLE; |
---|
529 | HANDLE CreateProcess(); |
---|
530 | void CloseHandle(HANDLE); |
---|
531 | </pre> |
---|
532 | <p>Instead of a raw pointer, it is possible to use <code>shared_ptr</code> as the |
---|
533 | handle and get reference counting and automatic resource management for free:</p> |
---|
534 | <pre>typedef shared_ptr<void> handle; |
---|
535 | |
---|
536 | handle createProcess() |
---|
537 | { |
---|
538 | shared_ptr<void> pv(CreateProcess(), CloseHandle); |
---|
539 | return pv; |
---|
540 | } |
---|
541 | </pre> |
---|
542 | <h2><A name="on_block_exit">Using <code>shared_ptr</code> to execute code on block exit</A></h2> |
---|
543 | <p><code>shared_ptr<void></code> can automatically execute cleanup code when |
---|
544 | control leaves a scope.</p> |
---|
545 | <UL> |
---|
546 | <LI> |
---|
547 | Executing <code>f(p)</code>, where <code>p</code> is a pointer:</LI></UL> |
---|
548 | <pre> shared_ptr<void> guard(p, f); |
---|
549 | </pre> |
---|
550 | <UL> |
---|
551 | <LI> |
---|
552 | Executing arbitrary code: <code>f(x, y)</code>:</LI></UL> |
---|
553 | <pre> shared_ptr<void> guard(static_cast<void*>(0), <A href="../bind/bind.html" >bind</A>(f, x, y)); |
---|
554 | </pre> |
---|
555 | <P>For a more thorough treatment, see the article "Simplify Your Exception-Safe |
---|
556 | Code" by Andrei Alexandrescu and Petru Marginean, available online at <A href="http://www.cuj.com/experts/1812/alexandr.htm?topic=experts"> |
---|
557 | http://www.cuj.com/experts/1812/alexandr.htm?topic=experts</A>.</P> |
---|
558 | <h2><A name="pvoid">Using <code>shared_ptr<void></code> to hold an arbitrary |
---|
559 | object</A></h2> |
---|
560 | <p><code>shared_ptr<void></code> can act as a generic object pointer similar |
---|
561 | to <code>void*</code>. When a <code>shared_ptr<void></code> instance |
---|
562 | constructed as:</p> |
---|
563 | <pre> shared_ptr<void> pv(new X); |
---|
564 | </pre> |
---|
565 | <p>is destroyed, it will correctly dispose of the <code>X</code> object by |
---|
566 | executing <code>~X</code>.</p> |
---|
567 | <p>This propery can be used in much the same manner as a raw <code>void*</code> is |
---|
568 | used to temporarily strip type information from an object pointer. A <code>shared_ptr<void></code> |
---|
569 | can later be cast back to the correct type by using <code><A href="shared_ptr.htm#static_pointer_cast"> |
---|
570 | static_pointer_cast</A></code>.</p> |
---|
571 | <h2><A name="extra_data">Associating arbitrary data with heterogeneous <code>shared_ptr</code> |
---|
572 | instances</A></h2> |
---|
573 | <p><code>shared_ptr</code> and <code>weak_ptr</code> support <code>operator<</code> |
---|
574 | comparisons required by standard associative containers such as <code>std::map</code>. |
---|
575 | This can be used to non-intrusively associate arbitrary data with objects |
---|
576 | managed by <code>shared_ptr</code>:</p> |
---|
577 | <pre>typedef int Data; |
---|
578 | |
---|
579 | std::map< shared_ptr<void>, Data > userData; |
---|
580 | // or std::map< weak_ptr<void>, Data > userData; to not affect the lifetime |
---|
581 | |
---|
582 | shared_ptr<X> px(new X); |
---|
583 | shared_ptr<int> pi(new int(3)); |
---|
584 | |
---|
585 | userData[px] = 42; |
---|
586 | userData[pi] = 91; |
---|
587 | </pre> |
---|
588 | <h2><A name="as_lock">Using <code>shared_ptr</code> as a CopyConstructible mutex lock</A></h2> |
---|
589 | <p>Sometimes it's necessary to return a mutex lock from a function, and a |
---|
590 | noncopyable lock cannot be returned by value. It is possible to use <code>shared_ptr</code> |
---|
591 | as a mutex lock:</p> |
---|
592 | <pre>class mutex |
---|
593 | { |
---|
594 | public: |
---|
595 | |
---|
596 | void lock(); |
---|
597 | void unlock(); |
---|
598 | }; |
---|
599 | |
---|
600 | shared_ptr<mutex> lock(mutex & m) |
---|
601 | { |
---|
602 | m.lock(); |
---|
603 | return shared_ptr<mutex>(&m, mem_fn(&mutex::unlock)); |
---|
604 | } |
---|
605 | </pre> |
---|
606 | <p>Better yet, the <code>shared_ptr</code> instance acting as a lock can be |
---|
607 | encapsulated in a dedicated <code>shared_lock</code> class:</p> |
---|
608 | <pre>class shared_lock |
---|
609 | { |
---|
610 | private: |
---|
611 | |
---|
612 | shared_ptr<void> pv; |
---|
613 | |
---|
614 | public: |
---|
615 | |
---|
616 | template<class Mutex> explicit shared_lock(Mutex & m): pv((m.lock(), &m), mem_fn(&Mutex::unlock)) {} |
---|
617 | }; |
---|
618 | </pre> |
---|
619 | <p><code>shared_lock</code> can now be used as:</p> |
---|
620 | <pre> shared_lock lock(m); |
---|
621 | </pre> |
---|
622 | <p>Note that <code>shared_lock</code> is not templated on the mutex type, thanks to <code> |
---|
623 | shared_ptr<void></code>'s ability to hide type information.</p> |
---|
624 | <h2><A name="wrapper">Using <code>shared_ptr</code> to wrap member function calls</A></h2> |
---|
625 | <p><code>shared_ptr</code> implements the ownership semantics required from the <code>Wrap</code>/<code>CallProxy</code> |
---|
626 | scheme described in Bjarne Stroustrup's article "Wrapping C++ Member Function |
---|
627 | Calls" (available online at <A href="http://www.research.att.com/~bs/wrapper.pdf">http://www.research.att.com/~bs/wrapper.pdf</A>). |
---|
628 | An implementation is given below:</p> |
---|
629 | <pre>template<class T> class pointer |
---|
630 | { |
---|
631 | private: |
---|
632 | |
---|
633 | T * p_; |
---|
634 | |
---|
635 | public: |
---|
636 | |
---|
637 | explicit pointer(T * p): p_(p) |
---|
638 | { |
---|
639 | } |
---|
640 | |
---|
641 | shared_ptr<T> operator->() const |
---|
642 | { |
---|
643 | p_->prefix(); |
---|
644 | return shared_ptr<T>(p_, <A href="../bind/mem_fn.html" >mem_fn</A>(&T::suffix)); |
---|
645 | } |
---|
646 | }; |
---|
647 | |
---|
648 | class X |
---|
649 | { |
---|
650 | private: |
---|
651 | |
---|
652 | void prefix(); |
---|
653 | void suffix(); |
---|
654 | friend class pointer<X>; |
---|
655 | |
---|
656 | public: |
---|
657 | |
---|
658 | void f(); |
---|
659 | void g(); |
---|
660 | }; |
---|
661 | |
---|
662 | int main() |
---|
663 | { |
---|
664 | X x; |
---|
665 | |
---|
666 | pointer<X> px(&x); |
---|
667 | |
---|
668 | px->f(); |
---|
669 | px->g(); |
---|
670 | } |
---|
671 | </pre> |
---|
672 | <h2><A name="delayed">Delayed deallocation</A></h2> |
---|
673 | <p>In some situations, a single <code>px.reset()</code> can trigger an expensive |
---|
674 | deallocation in a performance-critical region:</p> |
---|
675 | <pre>class X; // ~X is expensive |
---|
676 | |
---|
677 | class Y |
---|
678 | { |
---|
679 | shared_ptr<X> px; |
---|
680 | |
---|
681 | public: |
---|
682 | |
---|
683 | void f() |
---|
684 | { |
---|
685 | px.reset(); |
---|
686 | } |
---|
687 | }; |
---|
688 | </pre> |
---|
689 | <p>The solution is to postpone the potential deallocation by moving <code>px</code> |
---|
690 | to a dedicated free list that can be periodically emptied when performance and |
---|
691 | response times are not an issue:</p> |
---|
692 | <pre>vector< shared_ptr<void> > free_list; |
---|
693 | |
---|
694 | class Y |
---|
695 | { |
---|
696 | shared_ptr<X> px; |
---|
697 | |
---|
698 | public: |
---|
699 | |
---|
700 | void f() |
---|
701 | { |
---|
702 | free_list.push_back(px); |
---|
703 | px.reset(); |
---|
704 | } |
---|
705 | }; |
---|
706 | |
---|
707 | // periodically invoke free_list.clear() when convenient |
---|
708 | </pre> |
---|
709 | <p>Another variation is to move the free list logic to the construction point by |
---|
710 | using a delayed deleter:</p> |
---|
711 | <pre>struct delayed_deleter |
---|
712 | { |
---|
713 | template<class T> void operator()(T * p) |
---|
714 | { |
---|
715 | try |
---|
716 | { |
---|
717 | shared_ptr<void> pv(p); |
---|
718 | free_list.push_back(pv); |
---|
719 | } |
---|
720 | catch(...) |
---|
721 | { |
---|
722 | } |
---|
723 | } |
---|
724 | }; |
---|
725 | </pre> |
---|
726 | <h2><A name="weak_without_shared">Weak pointers to objects not managed by a <code>shared_ptr</code></A></h2> |
---|
727 | <p>Make the object hold a <code>shared_ptr</code> to itself, using a <code>null_deleter</code>:</p> |
---|
728 | <pre>class X |
---|
729 | { |
---|
730 | private: |
---|
731 | |
---|
732 | shared_ptr<X> this_; |
---|
733 | int i_; |
---|
734 | |
---|
735 | public: |
---|
736 | |
---|
737 | explicit X(int i): this_(this, null_deleter()), i_(i) |
---|
738 | { |
---|
739 | } |
---|
740 | |
---|
741 | // repeat in all constructors (including the copy constructor!) |
---|
742 | |
---|
743 | X(X const & rhs): this_(this, null_deleter()), i_(rhs.i_) |
---|
744 | { |
---|
745 | } |
---|
746 | |
---|
747 | // do not forget to not assign this_ in the copy assignment |
---|
748 | |
---|
749 | X & operator=(X const & rhs) |
---|
750 | { |
---|
751 | i_ = rhs.i_; |
---|
752 | } |
---|
753 | |
---|
754 | weak_ptr<X> get_weak_ptr() const { return this_; } |
---|
755 | }; |
---|
756 | </pre> |
---|
757 | <p>When the object's lifetime ends, <code>X::this_</code> will be destroyed, and |
---|
758 | all weak pointers will automatically expire.</p> |
---|
759 | <hr> |
---|
760 | <p>$Date: 2006/11/09 20:22:24 $</p> |
---|
761 | <p><small>Copyright © 2003 Peter Dimov. Distributed under the Boost Software License, Version |
---|
762 | 1.0. See accompanying file <A href="../../LICENSE_1_0.txt">LICENSE_1_0.txt</A> or |
---|
763 | copy at <A href="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</A>.</small></p> |
---|
764 | </body> |
---|
765 | </html> |
---|