1 | <?xml version="1.0" encoding="utf-8"?> |
---|
2 | <!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN" |
---|
3 | "http://www.boost.org/tools/boostbook/dtd/boostbook.dtd"> |
---|
4 | <section id="variant.tutorial.advanced"> |
---|
5 | <title>Advanced Topics</title> |
---|
6 | |
---|
7 | <using-namespace name="boost"/> |
---|
8 | <using-class name="boost::variant"/> |
---|
9 | |
---|
10 | <para>This section discusses several features of the library often required |
---|
11 | for advanced uses of <code>variant</code>. Unlike in the above section, each |
---|
12 | feature presented below is largely independent of the others. Accordingly, |
---|
13 | this section is not necessarily intended to be read linearly or in its |
---|
14 | entirety.</para> |
---|
15 | |
---|
16 | <section id="variant.tutorial.preprocessor"> |
---|
17 | <title>Preprocessor macros</title> |
---|
18 | |
---|
19 | <para>While the <code>variant</code> class template's variadic parameter |
---|
20 | list greatly simplifies use for specific instantiations of the template, |
---|
21 | it significantly complicates use for generic instantiations. For instance, |
---|
22 | while it is immediately clear how one might write a function accepting a |
---|
23 | specific <code>variant</code> instantiation, say |
---|
24 | <code>variant<int, std::string></code>, it is less clear how one |
---|
25 | might write a function accepting any given <code>variant</code>.</para> |
---|
26 | |
---|
27 | <para>Due to the lack of support for true variadic template parameter lists |
---|
28 | in the C++98 standard, the preprocessor is needed. While the |
---|
29 | <libraryname>Preprocessor</libraryname> library provides a general and |
---|
30 | powerful solution, the need to repeat |
---|
31 | <code><macroname>BOOST_VARIANT_LIMIT_TYPES</macroname></code> |
---|
32 | unnecessarily clutters otherwise simple code. Therefore, for common |
---|
33 | use-cases, this library provides its own macro |
---|
34 | <code><emphasis role="bold"><macroname>BOOST_VARIANT_ENUM_PARAMS</macroname></emphasis></code>.</para> |
---|
35 | |
---|
36 | <para>This macro simplifies for the user the process of declaring |
---|
37 | <code>variant</code> types in function templates or explicit partial |
---|
38 | specializations of class templates, as shown in the following: |
---|
39 | |
---|
40 | <programlisting>// general cases |
---|
41 | template <typename T> void some_func(const T &); |
---|
42 | template <typename T> class some_class; |
---|
43 | |
---|
44 | // function template overload |
---|
45 | template <<macroname>BOOST_VARIANT_ENUM_PARAMS</macroname>(typename T)> |
---|
46 | void some_func(const <classname>boost::variant</classname><<macroname>BOOST_VARIANT_ENUM_PARAMS</macroname>(T)> &); |
---|
47 | |
---|
48 | // explicit partial specialization |
---|
49 | template <<macroname>BOOST_VARIANT_ENUM_PARAMS</macroname>(typename T)> |
---|
50 | class some_class< <classname>boost::variant</classname><<macroname>BOOST_VARIANT_ENUM_PARAMS</macroname>(T)> >;</programlisting> |
---|
51 | |
---|
52 | </para> |
---|
53 | |
---|
54 | </section> |
---|
55 | |
---|
56 | <section id="variant.tutorial.over-sequence"> |
---|
57 | <title>Using a type sequence to specify bounded types</title> |
---|
58 | |
---|
59 | <para>While convenient for typical uses, the <code>variant</code> class |
---|
60 | template's variadic template parameter list is limiting in two significant |
---|
61 | dimensions. First, due to the lack of support for true variadic template |
---|
62 | parameter lists in C++, the number of parameters must be limited to some |
---|
63 | implementation-defined maximum (namely, |
---|
64 | <code><macroname>BOOST_VARIANT_LIMIT_TYPES</macroname></code>). |
---|
65 | Second, the nature of parameter lists in general makes compile-time |
---|
66 | manipulation of the lists excessively difficult.</para> |
---|
67 | |
---|
68 | <para>To solve these problems, |
---|
69 | <code>make_variant_over< <emphasis>Sequence</emphasis> ></code> |
---|
70 | exposes a <code>variant</code> whose bounded types are the elements of |
---|
71 | <code>Sequence</code> (where <code>Sequence</code> is any type fulfilling |
---|
72 | the requirements of <libraryname>MPL</libraryname>'s |
---|
73 | <emphasis>Sequence</emphasis> concept). For instance, |
---|
74 | |
---|
75 | <programlisting>typedef <classname>mpl::vector</classname>< std::string > types_initial; |
---|
76 | typedef <classname>mpl::push_front</classname>< types_initial, int >::type types; |
---|
77 | |
---|
78 | <classname>boost::make_variant_over</classname>< types >::type v1;</programlisting> |
---|
79 | |
---|
80 | behaves equivalently to |
---|
81 | |
---|
82 | <programlisting><classname>boost::variant</classname>< int, std::string > v2;</programlisting> |
---|
83 | |
---|
84 | </para> |
---|
85 | |
---|
86 | <para><emphasis role="bold">Portability</emphasis>: Unfortunately, due to |
---|
87 | standard conformance issues in several compilers, |
---|
88 | <code>make_variant_over</code> is not universally available. On these |
---|
89 | compilers the library indicates its lack of support for the syntax via the |
---|
90 | definition of the preprocessor symbol |
---|
91 | <code><macroname>BOOST_VARIANT_NO_TYPE_SEQUENCE_SUPPORT</macroname></code>.</para> |
---|
92 | |
---|
93 | </section> |
---|
94 | |
---|
95 | <section id="variant.tutorial.recursive"> |
---|
96 | <title>Recursive <code>variant</code> types</title> |
---|
97 | |
---|
98 | <para>Recursive types facilitate the construction of complex semantics from |
---|
99 | simple syntax. For instance, nearly every programmer is familiar with the |
---|
100 | canonical definition of a linked list implementation, whose simple |
---|
101 | definition allows sequences of unlimited length: |
---|
102 | |
---|
103 | <programlisting>template <typename T> |
---|
104 | struct list_node |
---|
105 | { |
---|
106 | T data; |
---|
107 | list_node * next; |
---|
108 | };</programlisting> |
---|
109 | |
---|
110 | </para> |
---|
111 | |
---|
112 | <para>The nature of <code>variant</code> as a generic class template |
---|
113 | unfortunately precludes the straightforward construction of recursive |
---|
114 | <code>variant</code> types. Consider the following attempt to construct |
---|
115 | a structure for simple mathematical expressions: |
---|
116 | |
---|
117 | <programlisting>struct add; |
---|
118 | struct sub; |
---|
119 | template <typename OpTag> struct binary_op; |
---|
120 | |
---|
121 | typedef <classname>boost::variant</classname>< |
---|
122 | int |
---|
123 | , binary_op<add> |
---|
124 | , binary_op<sub> |
---|
125 | > expression; |
---|
126 | |
---|
127 | template <typename OpTag> |
---|
128 | struct binary_op |
---|
129 | { |
---|
130 | expression left; // <emphasis>variant instantiated here...</emphasis> |
---|
131 | expression right; |
---|
132 | |
---|
133 | binary_op( const expression & lhs, const expression & rhs ) |
---|
134 | : left(lhs), right(rhs) |
---|
135 | { |
---|
136 | } |
---|
137 | |
---|
138 | }; // <emphasis>...but binary_op not complete until here!</emphasis></programlisting> |
---|
139 | |
---|
140 | </para> |
---|
141 | |
---|
142 | <para>While well-intentioned, the above approach will not compile because |
---|
143 | <code>binary_op</code> is still incomplete when the <code>variant</code> |
---|
144 | type <code>expression</code> is instantiated. Further, the approach suffers |
---|
145 | from a more significant logical flaw: even if C++ syntax were different |
---|
146 | such that the above example could be made to "work," |
---|
147 | <code>expression</code> would need to be of infinite size, which is |
---|
148 | clearly impossible.</para> |
---|
149 | |
---|
150 | <para>To overcome these difficulties, <code>variant</code> includes special |
---|
151 | support for the |
---|
152 | <code><classname>boost::recursive_wrapper</classname></code> class |
---|
153 | template, which breaks the circular dependency at the heart of these |
---|
154 | problems. Further, |
---|
155 | <code><classname>boost::make_recursive_variant</classname></code> provides |
---|
156 | a more convenient syntax for declaring recursive <code>variant</code> |
---|
157 | types. Tutorials for use of these facilities is described in |
---|
158 | <xref linkend="variant.tutorial.recursive.recursive-wrapper"/> and |
---|
159 | <xref linkend="variant.tutorial.recursive.recursive-variant"/>.</para> |
---|
160 | |
---|
161 | <section id="variant.tutorial.recursive.recursive-wrapper"> |
---|
162 | <title>Recursive types with <code>recursive_wrapper</code></title> |
---|
163 | |
---|
164 | <para>The following example demonstrates how <code>recursive_wrapper</code> |
---|
165 | could be used to solve the problem presented in |
---|
166 | <xref linkend="variant.tutorial.recursive"/>: |
---|
167 | |
---|
168 | <programlisting>typedef <classname>boost::variant</classname>< |
---|
169 | int |
---|
170 | , <classname>boost::recursive_wrapper</classname>< binary_op<add> > |
---|
171 | , <classname>boost::recursive_wrapper</classname>< binary_op<sub> > |
---|
172 | > expression;</programlisting> |
---|
173 | |
---|
174 | </para> |
---|
175 | |
---|
176 | <para>Because <code>variant</code> provides special support for |
---|
177 | <code>recursive_wrapper</code>, clients may treat the resultant |
---|
178 | <code>variant</code> as though the wrapper were not present. This is seen |
---|
179 | in the implementation of the following visitor, which calculates the value |
---|
180 | of an <code>expression</code> without any reference to |
---|
181 | <code>recursive_wrapper</code>: |
---|
182 | |
---|
183 | <programlisting>class calculator : public <classname>boost::static_visitor<int></classname> |
---|
184 | { |
---|
185 | public: |
---|
186 | |
---|
187 | int operator()(int value) const |
---|
188 | { |
---|
189 | return value; |
---|
190 | } |
---|
191 | |
---|
192 | int operator()(const binary_op<add> & binary) const |
---|
193 | { |
---|
194 | return <functionname>boost::apply_visitor</functionname>( calculator(), binary.left ) |
---|
195 | + <functionname>boost::apply_visitor</functionname>( calculator(), binary.right ); |
---|
196 | } |
---|
197 | |
---|
198 | int operator()(const binary_op<sub> & binary) const |
---|
199 | { |
---|
200 | return <functionname>boost::apply_visitor</functionname>( calculator(), binary.left ) |
---|
201 | - <functionname>boost::apply_visitor</functionname>( calculator(), binary.right ); |
---|
202 | } |
---|
203 | |
---|
204 | };</programlisting> |
---|
205 | |
---|
206 | </para> |
---|
207 | |
---|
208 | <para>Finally, we can demonstrate <code>expression</code> in action: |
---|
209 | |
---|
210 | <programlisting>void f() |
---|
211 | { |
---|
212 | // result = ((7-3)+8) = 12 |
---|
213 | expression result( |
---|
214 | binary_op<add>( |
---|
215 | binary_op<sub>(7,3) |
---|
216 | , 8 |
---|
217 | ) |
---|
218 | ); |
---|
219 | |
---|
220 | assert( <functionname>boost::apply_visitor</functionname>(calculator(),result) == 12 ); |
---|
221 | }</programlisting> |
---|
222 | |
---|
223 | </para> |
---|
224 | |
---|
225 | </section> |
---|
226 | |
---|
227 | <section id="variant.tutorial.recursive.recursive-variant"> |
---|
228 | <title>Recursive types with <code>make_recursive_variant</code></title> |
---|
229 | |
---|
230 | <para>For some applications of recursive <code>variant</code> types, a user |
---|
231 | may be able to sacrifice the full flexibility of using |
---|
232 | <code>recursive_wrapper</code> with <code>variant</code> for the following |
---|
233 | convenient syntax: |
---|
234 | |
---|
235 | <programlisting>typedef <classname>boost::make_recursive_variant</classname>< |
---|
236 | int |
---|
237 | , std::vector< boost::recursive_variant_ > |
---|
238 | >::type int_tree_t;</programlisting> |
---|
239 | |
---|
240 | </para> |
---|
241 | |
---|
242 | <para>Use of the resultant <code>variant</code> type is as expected: |
---|
243 | |
---|
244 | <programlisting>std::vector< int_tree_t > subresult; |
---|
245 | subresult.push_back(3); |
---|
246 | subresult.push_back(5); |
---|
247 | |
---|
248 | std::vector< int_tree_t > result; |
---|
249 | result.push_back(1); |
---|
250 | result.push_back(subresult); |
---|
251 | result.push_back(7); |
---|
252 | |
---|
253 | int_tree_t var(result);</programlisting> |
---|
254 | |
---|
255 | </para> |
---|
256 | |
---|
257 | <para>To be clear, one might represent the resultant content of |
---|
258 | <code>var</code> as <code>( 1 ( 3 5 ) 7 )</code>.</para> |
---|
259 | |
---|
260 | <para>Finally, note that a type sequence can be used to specify the bounded |
---|
261 | types of a recursive <code>variant</code> via the use of |
---|
262 | <code><classname>boost::make_recursive_variant_over</classname></code>, |
---|
263 | whose semantics are the same as <code>make_variant_over</code> (which is |
---|
264 | described in <xref linkend="variant.tutorial.over-sequence"/>).</para> |
---|
265 | |
---|
266 | <para><emphasis role="bold">Portability</emphasis>: Unfortunately, due to |
---|
267 | standard conformance issues in several compilers, |
---|
268 | <code>make_recursive_variant</code> is not universally supported. On these |
---|
269 | compilers the library indicates its lack of support via the definition |
---|
270 | of the preprocessor symbol |
---|
271 | <code><macroname>BOOST_VARIANT_NO_FULL_RECURSIVE_VARIANT_SUPPORT</macroname></code>. |
---|
272 | Thus, unless working with highly-conformant compilers, maximum portability |
---|
273 | will be achieved by instead using <code>recursive_wrapper</code>, as |
---|
274 | described in |
---|
275 | <xref linkend="variant.tutorial.recursive.recursive-wrapper"/>.</para> |
---|
276 | |
---|
277 | </section> |
---|
278 | |
---|
279 | </section> <!--/tutorial.recursive--> |
---|
280 | |
---|
281 | <section id="variant.tutorial.binary-visitation"> |
---|
282 | <title>Binary visitation</title> |
---|
283 | |
---|
284 | <para>As the tutorial above demonstrates, visitation is a powerful mechanism |
---|
285 | for manipulating <code>variant</code> content. Binary visitation further |
---|
286 | extends the power and flexibility of visitation by allowing simultaneous |
---|
287 | visitation of the content of two different <code>variant</code> |
---|
288 | objects.</para> |
---|
289 | |
---|
290 | <para>Notably this feature requires that binary visitors are incompatible |
---|
291 | with the visitor objects discussed in the tutorial above, as they must |
---|
292 | operate on two arguments. The following demonstrates the implementation of |
---|
293 | a binary visitor: |
---|
294 | |
---|
295 | <programlisting>class are_strict_equals |
---|
296 | : public <classname>boost::static_visitor</classname><bool> |
---|
297 | { |
---|
298 | public: |
---|
299 | |
---|
300 | template <typename T, typename U> |
---|
301 | bool operator()( const T &, const U & ) const |
---|
302 | { |
---|
303 | return false; // cannot compare different types |
---|
304 | } |
---|
305 | |
---|
306 | template <typename T> |
---|
307 | bool operator()( const T & lhs, const T & rhs ) const |
---|
308 | { |
---|
309 | return lhs == rhs; |
---|
310 | } |
---|
311 | |
---|
312 | };</programlisting> |
---|
313 | |
---|
314 | </para> |
---|
315 | |
---|
316 | <para>As expected, the visitor is applied to two <code>variant</code> |
---|
317 | arguments by means of <code>apply_visitor</code>: |
---|
318 | |
---|
319 | <programlisting><classname>boost::variant</classname>< int, std::string > v1( "hello" ); |
---|
320 | |
---|
321 | <classname>boost::variant</classname>< double, std::string > v2( "hello" ); |
---|
322 | assert( <functionname>boost::apply_visitor</functionname>(are_strict_equals(), v1, v2) ); |
---|
323 | |
---|
324 | <classname>boost::variant</classname>< int, const char * > v3( "hello" ); |
---|
325 | assert( !<functionname>boost::apply_visitor</functionname>(are_strict_equals(), v1, v3) );</programlisting> |
---|
326 | |
---|
327 | </para> |
---|
328 | |
---|
329 | <para>Finally, we must note that the function object returned from the |
---|
330 | "delayed" form of |
---|
331 | <code><functionname>apply_visitor</functionname></code> also supports |
---|
332 | binary visitation, as the following demonstrates: |
---|
333 | |
---|
334 | <programlisting>typedef <classname>boost::variant</classname><double, std::string> my_variant; |
---|
335 | |
---|
336 | std::vector< my_variant > seq1; |
---|
337 | seq1.push_back("pi is close to "); |
---|
338 | seq1.push_back(3.14); |
---|
339 | |
---|
340 | std::list< my_variant > seq2; |
---|
341 | seq2.push_back("pi is close to "); |
---|
342 | seq2.push_back(3.14); |
---|
343 | |
---|
344 | are_strict_equals visitor; |
---|
345 | assert( std::equal( |
---|
346 | v1.begin(), v1.end(), v2.begin() |
---|
347 | , <functionname>boost::apply_visitor</functionname>( visitor ) |
---|
348 | ) );</programlisting> |
---|
349 | |
---|
350 | </para> |
---|
351 | |
---|
352 | </section> |
---|
353 | |
---|
354 | </section> |
---|