1 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> |
---|
2 | <html> |
---|
3 | <head> |
---|
4 | |
---|
5 | <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-15"/> |
---|
6 | <title>Ogg Vorbis Documentation</title> |
---|
7 | |
---|
8 | <style type="text/css"> |
---|
9 | body { |
---|
10 | margin: 0 18px 0 18px; |
---|
11 | padding-bottom: 30px; |
---|
12 | font-family: Verdana, Arial, Helvetica, sans-serif; |
---|
13 | color: #333333; |
---|
14 | font-size: .8em; |
---|
15 | } |
---|
16 | |
---|
17 | a { |
---|
18 | color: #3366cc; |
---|
19 | } |
---|
20 | |
---|
21 | img { |
---|
22 | border: 0; |
---|
23 | } |
---|
24 | |
---|
25 | #xiphlogo { |
---|
26 | margin: 30px 0 16px 0; |
---|
27 | } |
---|
28 | |
---|
29 | #content p { |
---|
30 | line-height: 1.4; |
---|
31 | } |
---|
32 | |
---|
33 | h1, h1 a, h2, h2 a, h3, h3 a { |
---|
34 | font-weight: bold; |
---|
35 | color: #ff9900; |
---|
36 | margin: 1.3em 0 8px 0; |
---|
37 | } |
---|
38 | |
---|
39 | h1 { |
---|
40 | font-size: 1.3em; |
---|
41 | } |
---|
42 | |
---|
43 | h2 { |
---|
44 | font-size: 1.2em; |
---|
45 | } |
---|
46 | |
---|
47 | h3 { |
---|
48 | font-size: 1.1em; |
---|
49 | } |
---|
50 | |
---|
51 | li { |
---|
52 | line-height: 1.4; |
---|
53 | } |
---|
54 | |
---|
55 | #copyright { |
---|
56 | margin-top: 30px; |
---|
57 | line-height: 1.5em; |
---|
58 | text-align: center; |
---|
59 | font-size: .8em; |
---|
60 | color: #888888; |
---|
61 | clear: both; |
---|
62 | } |
---|
63 | </style> |
---|
64 | |
---|
65 | </head> |
---|
66 | |
---|
67 | <body> |
---|
68 | |
---|
69 | <div id="xiphlogo"> |
---|
70 | <a href="http://www.xiph.org/"><img src="fish_xiph_org.png" alt="Fish Logo and Xiph.org"/></a> |
---|
71 | </div> |
---|
72 | |
---|
73 | <h1>Ogg logical bitstream framing</h1> |
---|
74 | |
---|
75 | <h2>Ogg bitstreams</h2> |
---|
76 | |
---|
77 | <p>The Ogg transport bitstream is designed to provide framing, error |
---|
78 | protection and seeking structure for higher-level codec streams that |
---|
79 | consist of raw, unencapsulated data packets, such as the Vorbis audio |
---|
80 | codec or Theora video codec.</p> |
---|
81 | |
---|
82 | <h2>Application example: Vorbis</h2> |
---|
83 | |
---|
84 | <p>Vorbis encodes short-time blocks of PCM data into raw packets of |
---|
85 | bit-packed data. These raw packets may be used directly by transport |
---|
86 | mechanisms that provide their own framing and packet-separation |
---|
87 | mechanisms (such as UDP datagrams). For stream based storage (such as |
---|
88 | files) and transport (such as TCP streams or pipes), Vorbis uses the |
---|
89 | Ogg bitstream format to provide framing/sync, sync recapture |
---|
90 | after error, landmarks during seeking, and enough information to |
---|
91 | properly separate data back into packets at the original packet |
---|
92 | boundaries without relying on decoding to find packet boundaries.</p> |
---|
93 | |
---|
94 | <h2>Design constraints for Ogg bitstreams</h2> |
---|
95 | |
---|
96 | <ol> |
---|
97 | <li>True streaming; we must not need to seek to build a 100% |
---|
98 | complete bitstream.</li> |
---|
99 | <li>Use no more than approximately 1-2% of bitstream bandwidth for |
---|
100 | packet boundary marking, high-level framing, sync and seeking.</li> |
---|
101 | <li>Specification of absolute position within the original sample |
---|
102 | stream.</li> |
---|
103 | <li>Simple mechanism to ease limited editing, such as a simplified |
---|
104 | concatenation mechanism.</li> |
---|
105 | <li>Detection of corruption, recapture after error and direct, random |
---|
106 | access to data at arbitrary positions in the bitstream.</li> |
---|
107 | </ol> |
---|
108 | |
---|
109 | <h2>Logical and Physical Bitstreams</h2> |
---|
110 | |
---|
111 | <p>A <em>logical</em> Ogg bitstream is a contiguous stream of |
---|
112 | sequential pages belonging only to the logical bitstream. A |
---|
113 | <em>physical</em> Ogg bitstream is constructed from one or more |
---|
114 | than one logical Ogg bitstream (the simplest physical bitstream |
---|
115 | is simply a single logical bitstream). We describe below the exact |
---|
116 | formatting of an Ogg logical bitstream. Combining logical |
---|
117 | bitstreams into more complex physical bitstreams is described in the |
---|
118 | <a href="oggstream.html">Ogg bitstream overview</a>. The exact |
---|
119 | mapping of raw Vorbis packets into a valid Ogg Vorbis physical |
---|
120 | bitstream is described in the Vorbis I Specification.</p> |
---|
121 | |
---|
122 | <h2>Bitstream structure</h2> |
---|
123 | |
---|
124 | <p>An Ogg stream is structured by dividing incoming packets into |
---|
125 | segments of up to 255 bytes and then wrapping a group of contiguous |
---|
126 | packet segments into a variable length page preceded by a page |
---|
127 | header. Both the header size and page size are variable; the page |
---|
128 | header contains sizing information and checksum data to determine |
---|
129 | header/page size and data integrity.</p> |
---|
130 | |
---|
131 | <p>The bitstream is captured (or recaptured) by looking for the beginning |
---|
132 | of a page, specifically the capture pattern. Once the capture pattern |
---|
133 | is found, the decoder verifies page sync and integrity by computing |
---|
134 | and comparing the checksum. At that point, the decoder can extract the |
---|
135 | packets themselves.</p> |
---|
136 | |
---|
137 | <h3>Packet segmentation</h3> |
---|
138 | |
---|
139 | <p>Packets are logically divided into multiple segments before encoding |
---|
140 | into a page. Note that the segmentation and fragmentation process is a |
---|
141 | logical one; it's used to compute page header values and the original |
---|
142 | page data need not be disturbed, even when a packet spans page |
---|
143 | boundaries.</p> |
---|
144 | |
---|
145 | <p>The raw packet is logically divided into [n] 255 byte segments and a |
---|
146 | last fractional segment of < 255 bytes. A packet size may well |
---|
147 | consist only of the trailing fractional segment, and a fractional |
---|
148 | segment may be zero length. These values, called "lacing values" are |
---|
149 | then saved and placed into the header segment table.</p> |
---|
150 | |
---|
151 | <p>An example should make the basic concept clear:</p> |
---|
152 | |
---|
153 | <pre> |
---|
154 | <tt> |
---|
155 | raw packet: |
---|
156 | ___________________________________________ |
---|
157 | |______________packet data__________________| 753 bytes |
---|
158 | |
---|
159 | lacing values for page header segment table: 255,255,243 |
---|
160 | </tt> |
---|
161 | </pre> |
---|
162 | |
---|
163 | <p>We simply add the lacing values for the total size; the last lacing |
---|
164 | value for a packet is always the value that is less than 255. Note |
---|
165 | that this encoding both avoids imposing a maximum packet size as well |
---|
166 | as imposing minimum overhead on small packets (as opposed to, eg, |
---|
167 | simply using two bytes at the head of every packet and having a max |
---|
168 | packet size of 32k. Small packets (<255, the typical case) are |
---|
169 | penalized with twice the segmentation overhead). Using the lacing |
---|
170 | values as suggested, small packets see the minimum possible |
---|
171 | byte-aligned overheade (1 byte) and large packets, over 512 bytes or |
---|
172 | so, see a fairly constant ~.5% overhead on encoding space.</p> |
---|
173 | |
---|
174 | <p>Note that a lacing value of 255 implies that a second lacing value |
---|
175 | follows in the packet, and a value of < 255 marks the end of the |
---|
176 | packet after that many additional bytes. A packet of 255 bytes (or a |
---|
177 | multiple of 255 bytes) is terminated by a lacing value of 0:</p> |
---|
178 | |
---|
179 | <pre><tt> |
---|
180 | raw packet: |
---|
181 | _______________________________ |
---|
182 | |________packet data____________| 255 bytes |
---|
183 | |
---|
184 | lacing values: 255, 0 |
---|
185 | </tt></pre> |
---|
186 | |
---|
187 | <p>Note also that a 'nil' (zero length) packet is not an error; it |
---|
188 | consists of nothing more than a lacing value of zero in the header.</p> |
---|
189 | |
---|
190 | <h3>Packets spanning pages</h3> |
---|
191 | |
---|
192 | <p>Packets are not restricted to beginning and ending within a page, |
---|
193 | although individual segments are, by definition, required to do so. |
---|
194 | Packets are not restricted to a maximum size, although excessively |
---|
195 | large packets in the data stream are discouraged; the Ogg |
---|
196 | bitstream specification strongly recommends nominal page size of |
---|
197 | approximately 4-8kB (large packets are foreseen as being useful for |
---|
198 | initialization data at the beginning of a logical bitstream).</p> |
---|
199 | |
---|
200 | <p>After segmenting a packet, the encoder may decide not to place all the |
---|
201 | resulting segments into the current page; to do so, the encoder places |
---|
202 | the lacing values of the segments it wishes to belong to the current |
---|
203 | page into the current segment table, then finishes the page. The next |
---|
204 | page is begun with the first value in the segment table belonging to |
---|
205 | the next packet segment, thus continuing the packet (data in the |
---|
206 | packet body must also correspond properly to the lacing values in the |
---|
207 | spanned pages. The segment data in the first packet corresponding to |
---|
208 | the lacing values of the first page belong in that page; packet |
---|
209 | segments listed in the segment table of the following page must begin |
---|
210 | the page body of the subsequent page).</p> |
---|
211 | |
---|
212 | <p>The last mechanic to spanning a page boundary is to set the header |
---|
213 | flag in the new page to indicate that the first lacing value in the |
---|
214 | segment table continues rather than begins a packet; a header flag of |
---|
215 | 0x01 is set to indicate a continued packet. Although mandatory, it |
---|
216 | is not actually algorithmically necessary; one could inspect the |
---|
217 | preceding segment table to determine if the packet is new or |
---|
218 | continued. Adding the information to the packet_header flag allows a |
---|
219 | simpler design (with no overhead) that needs only inspect the current |
---|
220 | page header after frame capture. This also allows faster error |
---|
221 | recovery in the event that the packet originates in a corrupt |
---|
222 | preceding page, implying that the previous page's segment table |
---|
223 | cannot be trusted.</p> |
---|
224 | |
---|
225 | <p>Note that a packet can span an arbitrary number of pages; the above |
---|
226 | spanning process is repeated for each spanned page boundary. Also a |
---|
227 | 'zero termination' on a packet size that is an even multiple of 255 |
---|
228 | must appear even if the lacing value appears in the next page as a |
---|
229 | zero-length continuation of the current packet. The header flag |
---|
230 | should be set to 0x01 to indicate that the packet spanned, even though |
---|
231 | the span is a nil case as far as data is concerned.</p> |
---|
232 | |
---|
233 | <p>The encoding looks odd, but is properly optimized for speed and the |
---|
234 | expected case of the majority of packets being between 50 and 200 |
---|
235 | bytes (note that it is designed such that packets of wildly different |
---|
236 | sizes can be handled within the model; placing packet size |
---|
237 | restrictions on the encoder would have only slightly simplified design |
---|
238 | in page generation and increased overall encoder complexity).</p> |
---|
239 | |
---|
240 | <p>The main point behind tracking individual packets (and packet |
---|
241 | segments) is to allow more flexible encoding tricks that requiring |
---|
242 | explicit knowledge of packet size. An example is simple bandwidth |
---|
243 | limiting, implemented by simply truncating packets in the nominal case |
---|
244 | if the packet is arranged so that the least sensitive portion of the |
---|
245 | data comes last.</p> |
---|
246 | |
---|
247 | <h3>Page header</h3> |
---|
248 | |
---|
249 | <p>The headering mechanism is designed to avoid copying and re-assembly |
---|
250 | of the packet data (ie, making the packet segmentation process a |
---|
251 | logical one); the header can be generated directly from incoming |
---|
252 | packet data. The encoder buffers packet data until it finishes a |
---|
253 | complete page at which point it writes the header followed by the |
---|
254 | buffered packet segments.</p> |
---|
255 | |
---|
256 | <h4>capture_pattern</h4> |
---|
257 | |
---|
258 | <p>A header begins with a capture pattern that simplifies identifying |
---|
259 | pages; once the decoder has found the capture pattern it can do a more |
---|
260 | intensive job of verifying that it has in fact found a page boundary |
---|
261 | (as opposed to an inadvertent coincidence in the byte stream).</p> |
---|
262 | |
---|
263 | <pre><tt> |
---|
264 | byte value |
---|
265 | |
---|
266 | 0 0x4f 'O' |
---|
267 | 1 0x67 'g' |
---|
268 | 2 0x67 'g' |
---|
269 | 3 0x53 'S' |
---|
270 | </tt></pre> |
---|
271 | |
---|
272 | <h4>stream_structure_version</h4> |
---|
273 | |
---|
274 | <p>The capture pattern is followed by the stream structure revision:</p> |
---|
275 | |
---|
276 | <pre><tt> |
---|
277 | byte value |
---|
278 | |
---|
279 | 4 0x00 |
---|
280 | </tt></pre> |
---|
281 | |
---|
282 | <h4>header_type_flag</h4> |
---|
283 | |
---|
284 | <p>The header type flag identifies this page's context in the bitstream:</p> |
---|
285 | |
---|
286 | <pre><tt> |
---|
287 | byte value |
---|
288 | |
---|
289 | 5 bitflags: 0x01: unset = fresh packet |
---|
290 | set = continued packet |
---|
291 | 0x02: unset = not first page of logical bitstream |
---|
292 | set = first page of logical bitstream (bos) |
---|
293 | 0x04: unset = not last page of logical bitstream |
---|
294 | set = last page of logical bitstream (eos) |
---|
295 | </tt></pre> |
---|
296 | |
---|
297 | <h4>absolute granule position</h4> |
---|
298 | |
---|
299 | <p>(This is packed in the same way the rest of Ogg data is packed; LSb |
---|
300 | of LSB first. Note that the 'position' data specifies a 'sample' |
---|
301 | number (eg, in a CD quality sample is four octets, 16 bits for left |
---|
302 | and 16 bits for right; in video it would likely be the frame number. |
---|
303 | It is up to the specific codec in use to define the semantic meaning |
---|
304 | of the granule position value). The position specified is the total |
---|
305 | samples encoded after including all packets finished on this page |
---|
306 | (packets begun on this page but continuing on to the next page do not |
---|
307 | count). The rationale here is that the position specified in the |
---|
308 | frame header of the last page tells how long the data coded by the |
---|
309 | bitstream is. A truncated stream will still return the proper number |
---|
310 | of samples that can be decoded fully.</p> |
---|
311 | |
---|
312 | <p>A special value of '-1' (in two's complement) indicates that no packets |
---|
313 | finish on this page.</p> |
---|
314 | |
---|
315 | <pre><tt> |
---|
316 | byte value |
---|
317 | |
---|
318 | 6 0xXX LSB |
---|
319 | 7 0xXX |
---|
320 | 8 0xXX |
---|
321 | 9 0xXX |
---|
322 | 10 0xXX |
---|
323 | 11 0xXX |
---|
324 | 12 0xXX |
---|
325 | 13 0xXX MSB |
---|
326 | </tt></pre> |
---|
327 | |
---|
328 | <h4>stream serial number</h4> |
---|
329 | |
---|
330 | <p>Ogg allows for separate logical bitstreams to be mixed at page |
---|
331 | granularity in a physical bitstream. The most common case would be |
---|
332 | sequential arrangement, but it is possible to interleave pages for |
---|
333 | two separate bitstreams to be decoded concurrently. The serial |
---|
334 | number is the means by which pages physical pages are associated with |
---|
335 | a particular logical stream. Each logical stream must have a unique |
---|
336 | serial number within a physical stream:</p> |
---|
337 | |
---|
338 | <pre><tt> |
---|
339 | byte value |
---|
340 | |
---|
341 | 14 0xXX LSB |
---|
342 | 15 0xXX |
---|
343 | 16 0xXX |
---|
344 | 17 0xXX MSB |
---|
345 | </tt></pre> |
---|
346 | |
---|
347 | <h4>page sequence no</h4> |
---|
348 | |
---|
349 | <p>Page counter; lets us know if a page is lost (useful where packets |
---|
350 | span page boundaries).</p> |
---|
351 | |
---|
352 | <pre><tt> |
---|
353 | byte value |
---|
354 | |
---|
355 | 18 0xXX LSB |
---|
356 | 19 0xXX |
---|
357 | 20 0xXX |
---|
358 | 21 0xXX MSB |
---|
359 | </tt></pre> |
---|
360 | |
---|
361 | <h4>page checksum</h4> |
---|
362 | |
---|
363 | <p>32 bit CRC value (direct algorithm, initial val and final XOR = 0, |
---|
364 | generator polynomial=0x04c11db7). The value is computed over the |
---|
365 | entire header (with the CRC field in the header set to zero) and then |
---|
366 | continued over the page. The CRC field is then filled with the |
---|
367 | computed value.</p> |
---|
368 | |
---|
369 | <p>(A thorough discussion of CRC algorithms can be found in <a |
---|
370 | href="http://www.ross.net/crc/download/crc_v3.txt">"A |
---|
371 | Painless Guide to CRC Error Detection Algorithms"</a> by Ross |
---|
372 | Williams <a href="mailto:ross@ross.net">ross@ross.net</a>.)</p> |
---|
373 | |
---|
374 | <pre><tt> |
---|
375 | byte value |
---|
376 | |
---|
377 | 22 0xXX LSB |
---|
378 | 23 0xXX |
---|
379 | 24 0xXX |
---|
380 | 25 0xXX MSB |
---|
381 | </tt></pre> |
---|
382 | |
---|
383 | <h4>page_segments</h4> |
---|
384 | |
---|
385 | <p>The number of segment entries to appear in the segment table. The |
---|
386 | maximum number of 255 segments (255 bytes each) sets the maximum |
---|
387 | possible physical page size at 65307 bytes or just under 64kB (thus |
---|
388 | we know that a header corrupted so as destroy sizing/alignment |
---|
389 | information will not cause a runaway bitstream. We'll read in the |
---|
390 | page according to the corrupted size information that's guaranteed to |
---|
391 | be a reasonable size regardless, notice the checksum mismatch, drop |
---|
392 | sync and then look for recapture).</p> |
---|
393 | |
---|
394 | <pre><tt> |
---|
395 | byte value |
---|
396 | |
---|
397 | 26 0x00-0xff (0-255) |
---|
398 | </tt></pre> |
---|
399 | |
---|
400 | <h4>segment_table (containing packet lacing values)</h4> |
---|
401 | |
---|
402 | <p>The lacing values for each packet segment physically appearing in |
---|
403 | this page are listed in contiguous order.</p> |
---|
404 | |
---|
405 | <pre><tt> |
---|
406 | byte value |
---|
407 | |
---|
408 | 27 0x00-0xff (0-255) |
---|
409 | [...] |
---|
410 | n 0x00-0xff (0-255, n=page_segments+26) |
---|
411 | </tt></pre> |
---|
412 | |
---|
413 | <p>Total page size is calculated directly from the known header size and |
---|
414 | lacing values in the segment table. Packet data segments follow |
---|
415 | immediately after the header.</p> |
---|
416 | |
---|
417 | <p>Page headers typically impose a flat .25-.5% space overhead assuming |
---|
418 | nominal ~8k page sizes. The segmentation table needed for exact |
---|
419 | packet recovery in the streaming layer adds approximately .5-1% |
---|
420 | nominal assuming expected encoder behavior in the 44.1kHz, 128kbps |
---|
421 | stereo encodings.</p> |
---|
422 | |
---|
423 | <div id="copyright"> |
---|
424 | The Xiph Fish Logo is a |
---|
425 | trademark (™) of Xiph.Org.<br/> |
---|
426 | |
---|
427 | These pages © 1994 - 2005 Xiph.Org. All rights reserved. |
---|
428 | </div> |
---|
429 | |
---|
430 | </body> |
---|
431 | </html> |
---|