1 | /******************************************************************** |
---|
2 | * * |
---|
3 | * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * |
---|
4 | * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * |
---|
5 | * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * |
---|
6 | * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * |
---|
7 | * * |
---|
8 | * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2007 * |
---|
9 | * by the Xiph.Org Foundation http://www.xiph.org/ * |
---|
10 | * * |
---|
11 | ******************************************************************** |
---|
12 | |
---|
13 | function: LSP (also called LSF) conversion routines |
---|
14 | last mod: $Id: lsp.c 13293 2007-07-24 00:09:47Z xiphmont $ |
---|
15 | |
---|
16 | The LSP generation code is taken (with minimal modification and a |
---|
17 | few bugfixes) from "On the Computation of the LSP Frequencies" by |
---|
18 | Joseph Rothweiler (see http://www.rothweiler.us for contact info). |
---|
19 | The paper is available at: |
---|
20 | |
---|
21 | http://www.myown1.com/joe/lsf |
---|
22 | |
---|
23 | ********************************************************************/ |
---|
24 | |
---|
25 | /* Note that the lpc-lsp conversion finds the roots of polynomial with |
---|
26 | an iterative root polisher (CACM algorithm 283). It *is* possible |
---|
27 | to confuse this algorithm into not converging; that should only |
---|
28 | happen with absurdly closely spaced roots (very sharp peaks in the |
---|
29 | LPC f response) which in turn should be impossible in our use of |
---|
30 | the code. If this *does* happen anyway, it's a bug in the floor |
---|
31 | finder; find the cause of the confusion (probably a single bin |
---|
32 | spike or accidental near-float-limit resolution problems) and |
---|
33 | correct it. */ |
---|
34 | |
---|
35 | #include <math.h> |
---|
36 | #include <string.h> |
---|
37 | #include <stdlib.h> |
---|
38 | #include "lsp.h" |
---|
39 | #include "os.h" |
---|
40 | #include "misc.h" |
---|
41 | #include "lookup.h" |
---|
42 | #include "scales.h" |
---|
43 | |
---|
44 | /* three possible LSP to f curve functions; the exact computation |
---|
45 | (float), a lookup based float implementation, and an integer |
---|
46 | implementation. The float lookup is likely the optimal choice on |
---|
47 | any machine with an FPU. The integer implementation is *not* fixed |
---|
48 | point (due to the need for a large dynamic range and thus a |
---|
49 | seperately tracked exponent) and thus much more complex than the |
---|
50 | relatively simple float implementations. It's mostly for future |
---|
51 | work on a fully fixed point implementation for processors like the |
---|
52 | ARM family. */ |
---|
53 | |
---|
54 | /* undefine both for the 'old' but more precise implementation */ |
---|
55 | #define FLOAT_LOOKUP |
---|
56 | #undef INT_LOOKUP |
---|
57 | |
---|
58 | #ifdef FLOAT_LOOKUP |
---|
59 | #include "lookup.c" /* catch this in the build system; we #include for |
---|
60 | compilers (like gcc) that can't inline across |
---|
61 | modules */ |
---|
62 | |
---|
63 | /* side effect: changes *lsp to cosines of lsp */ |
---|
64 | void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, |
---|
65 | float amp,float ampoffset){ |
---|
66 | int i; |
---|
67 | float wdel=M_PI/ln; |
---|
68 | vorbis_fpu_control fpu; |
---|
69 | |
---|
70 | vorbis_fpu_setround(&fpu); |
---|
71 | for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]); |
---|
72 | |
---|
73 | i=0; |
---|
74 | while(i<n){ |
---|
75 | int k=map[i]; |
---|
76 | int qexp; |
---|
77 | float p=.7071067812f; |
---|
78 | float q=.7071067812f; |
---|
79 | float w=vorbis_coslook(wdel*k); |
---|
80 | float *ftmp=lsp; |
---|
81 | int c=m>>1; |
---|
82 | |
---|
83 | do{ |
---|
84 | q*=ftmp[0]-w; |
---|
85 | p*=ftmp[1]-w; |
---|
86 | ftmp+=2; |
---|
87 | }while(--c); |
---|
88 | |
---|
89 | if(m&1){ |
---|
90 | /* odd order filter; slightly assymetric */ |
---|
91 | /* the last coefficient */ |
---|
92 | q*=ftmp[0]-w; |
---|
93 | q*=q; |
---|
94 | p*=p*(1.f-w*w); |
---|
95 | }else{ |
---|
96 | /* even order filter; still symmetric */ |
---|
97 | q*=q*(1.f+w); |
---|
98 | p*=p*(1.f-w); |
---|
99 | } |
---|
100 | |
---|
101 | q=frexp(p+q,&qexp); |
---|
102 | q=vorbis_fromdBlook(amp* |
---|
103 | vorbis_invsqlook(q)* |
---|
104 | vorbis_invsq2explook(qexp+m)- |
---|
105 | ampoffset); |
---|
106 | |
---|
107 | do{ |
---|
108 | curve[i++]*=q; |
---|
109 | }while(map[i]==k); |
---|
110 | } |
---|
111 | vorbis_fpu_restore(fpu); |
---|
112 | } |
---|
113 | |
---|
114 | #else |
---|
115 | |
---|
116 | #ifdef INT_LOOKUP |
---|
117 | #include "lookup.c" /* catch this in the build system; we #include for |
---|
118 | compilers (like gcc) that can't inline across |
---|
119 | modules */ |
---|
120 | |
---|
121 | static int MLOOP_1[64]={ |
---|
122 | 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13, |
---|
123 | 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14, |
---|
124 | 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, |
---|
125 | 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, |
---|
126 | }; |
---|
127 | |
---|
128 | static int MLOOP_2[64]={ |
---|
129 | 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7, |
---|
130 | 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8, |
---|
131 | 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, |
---|
132 | 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, |
---|
133 | }; |
---|
134 | |
---|
135 | static int MLOOP_3[8]={0,1,2,2,3,3,3,3}; |
---|
136 | |
---|
137 | |
---|
138 | /* side effect: changes *lsp to cosines of lsp */ |
---|
139 | void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, |
---|
140 | float amp,float ampoffset){ |
---|
141 | |
---|
142 | /* 0 <= m < 256 */ |
---|
143 | |
---|
144 | /* set up for using all int later */ |
---|
145 | int i; |
---|
146 | int ampoffseti=rint(ampoffset*4096.f); |
---|
147 | int ampi=rint(amp*16.f); |
---|
148 | long *ilsp=alloca(m*sizeof(*ilsp)); |
---|
149 | for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f); |
---|
150 | |
---|
151 | i=0; |
---|
152 | while(i<n){ |
---|
153 | int j,k=map[i]; |
---|
154 | unsigned long pi=46341; /* 2**-.5 in 0.16 */ |
---|
155 | unsigned long qi=46341; |
---|
156 | int qexp=0,shift; |
---|
157 | long wi=vorbis_coslook_i(k*65536/ln); |
---|
158 | |
---|
159 | qi*=labs(ilsp[0]-wi); |
---|
160 | pi*=labs(ilsp[1]-wi); |
---|
161 | |
---|
162 | for(j=3;j<m;j+=2){ |
---|
163 | if(!(shift=MLOOP_1[(pi|qi)>>25])) |
---|
164 | if(!(shift=MLOOP_2[(pi|qi)>>19])) |
---|
165 | shift=MLOOP_3[(pi|qi)>>16]; |
---|
166 | qi=(qi>>shift)*labs(ilsp[j-1]-wi); |
---|
167 | pi=(pi>>shift)*labs(ilsp[j]-wi); |
---|
168 | qexp+=shift; |
---|
169 | } |
---|
170 | if(!(shift=MLOOP_1[(pi|qi)>>25])) |
---|
171 | if(!(shift=MLOOP_2[(pi|qi)>>19])) |
---|
172 | shift=MLOOP_3[(pi|qi)>>16]; |
---|
173 | |
---|
174 | /* pi,qi normalized collectively, both tracked using qexp */ |
---|
175 | |
---|
176 | if(m&1){ |
---|
177 | /* odd order filter; slightly assymetric */ |
---|
178 | /* the last coefficient */ |
---|
179 | qi=(qi>>shift)*labs(ilsp[j-1]-wi); |
---|
180 | pi=(pi>>shift)<<14; |
---|
181 | qexp+=shift; |
---|
182 | |
---|
183 | if(!(shift=MLOOP_1[(pi|qi)>>25])) |
---|
184 | if(!(shift=MLOOP_2[(pi|qi)>>19])) |
---|
185 | shift=MLOOP_3[(pi|qi)>>16]; |
---|
186 | |
---|
187 | pi>>=shift; |
---|
188 | qi>>=shift; |
---|
189 | qexp+=shift-14*((m+1)>>1); |
---|
190 | |
---|
191 | pi=((pi*pi)>>16); |
---|
192 | qi=((qi*qi)>>16); |
---|
193 | qexp=qexp*2+m; |
---|
194 | |
---|
195 | pi*=(1<<14)-((wi*wi)>>14); |
---|
196 | qi+=pi>>14; |
---|
197 | |
---|
198 | }else{ |
---|
199 | /* even order filter; still symmetric */ |
---|
200 | |
---|
201 | /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't |
---|
202 | worth tracking step by step */ |
---|
203 | |
---|
204 | pi>>=shift; |
---|
205 | qi>>=shift; |
---|
206 | qexp+=shift-7*m; |
---|
207 | |
---|
208 | pi=((pi*pi)>>16); |
---|
209 | qi=((qi*qi)>>16); |
---|
210 | qexp=qexp*2+m; |
---|
211 | |
---|
212 | pi*=(1<<14)-wi; |
---|
213 | qi*=(1<<14)+wi; |
---|
214 | qi=(qi+pi)>>14; |
---|
215 | |
---|
216 | } |
---|
217 | |
---|
218 | |
---|
219 | /* we've let the normalization drift because it wasn't important; |
---|
220 | however, for the lookup, things must be normalized again. We |
---|
221 | need at most one right shift or a number of left shifts */ |
---|
222 | |
---|
223 | if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */ |
---|
224 | qi>>=1; qexp++; |
---|
225 | }else |
---|
226 | while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/ |
---|
227 | qi<<=1; qexp--; |
---|
228 | } |
---|
229 | |
---|
230 | amp=vorbis_fromdBlook_i(ampi* /* n.4 */ |
---|
231 | vorbis_invsqlook_i(qi,qexp)- |
---|
232 | /* m.8, m+n<=8 */ |
---|
233 | ampoffseti); /* 8.12[0] */ |
---|
234 | |
---|
235 | curve[i]*=amp; |
---|
236 | while(map[++i]==k)curve[i]*=amp; |
---|
237 | } |
---|
238 | } |
---|
239 | |
---|
240 | #else |
---|
241 | |
---|
242 | /* old, nonoptimized but simple version for any poor sap who needs to |
---|
243 | figure out what the hell this code does, or wants the other |
---|
244 | fraction of a dB precision */ |
---|
245 | |
---|
246 | /* side effect: changes *lsp to cosines of lsp */ |
---|
247 | void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, |
---|
248 | float amp,float ampoffset){ |
---|
249 | int i; |
---|
250 | float wdel=M_PI/ln; |
---|
251 | for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]); |
---|
252 | |
---|
253 | i=0; |
---|
254 | while(i<n){ |
---|
255 | int j,k=map[i]; |
---|
256 | float p=.5f; |
---|
257 | float q=.5f; |
---|
258 | float w=2.f*cos(wdel*k); |
---|
259 | for(j=1;j<m;j+=2){ |
---|
260 | q *= w-lsp[j-1]; |
---|
261 | p *= w-lsp[j]; |
---|
262 | } |
---|
263 | if(j==m){ |
---|
264 | /* odd order filter; slightly assymetric */ |
---|
265 | /* the last coefficient */ |
---|
266 | q*=w-lsp[j-1]; |
---|
267 | p*=p*(4.f-w*w); |
---|
268 | q*=q; |
---|
269 | }else{ |
---|
270 | /* even order filter; still symmetric */ |
---|
271 | p*=p*(2.f-w); |
---|
272 | q*=q*(2.f+w); |
---|
273 | } |
---|
274 | |
---|
275 | q=fromdB(amp/sqrt(p+q)-ampoffset); |
---|
276 | |
---|
277 | curve[i]*=q; |
---|
278 | while(map[++i]==k)curve[i]*=q; |
---|
279 | } |
---|
280 | } |
---|
281 | |
---|
282 | #endif |
---|
283 | #endif |
---|
284 | |
---|
285 | static void cheby(float *g, int ord) { |
---|
286 | int i, j; |
---|
287 | |
---|
288 | g[0] *= .5f; |
---|
289 | for(i=2; i<= ord; i++) { |
---|
290 | for(j=ord; j >= i; j--) { |
---|
291 | g[j-2] -= g[j]; |
---|
292 | g[j] += g[j]; |
---|
293 | } |
---|
294 | } |
---|
295 | } |
---|
296 | |
---|
297 | static int comp(const void *a,const void *b){ |
---|
298 | return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b); |
---|
299 | } |
---|
300 | |
---|
301 | /* Newton-Raphson-Maehly actually functioned as a decent root finder, |
---|
302 | but there are root sets for which it gets into limit cycles |
---|
303 | (exacerbated by zero suppression) and fails. We can't afford to |
---|
304 | fail, even if the failure is 1 in 100,000,000, so we now use |
---|
305 | Laguerre and later polish with Newton-Raphson (which can then |
---|
306 | afford to fail) */ |
---|
307 | |
---|
308 | #define EPSILON 10e-7 |
---|
309 | static int Laguerre_With_Deflation(float *a,int ord,float *r){ |
---|
310 | int i,m; |
---|
311 | double lastdelta=0.f; |
---|
312 | double *defl=alloca(sizeof(*defl)*(ord+1)); |
---|
313 | for(i=0;i<=ord;i++)defl[i]=a[i]; |
---|
314 | |
---|
315 | for(m=ord;m>0;m--){ |
---|
316 | double new=0.f,delta; |
---|
317 | |
---|
318 | /* iterate a root */ |
---|
319 | while(1){ |
---|
320 | double p=defl[m],pp=0.f,ppp=0.f,denom; |
---|
321 | |
---|
322 | /* eval the polynomial and its first two derivatives */ |
---|
323 | for(i=m;i>0;i--){ |
---|
324 | ppp = new*ppp + pp; |
---|
325 | pp = new*pp + p; |
---|
326 | p = new*p + defl[i-1]; |
---|
327 | } |
---|
328 | |
---|
329 | /* Laguerre's method */ |
---|
330 | denom=(m-1) * ((m-1)*pp*pp - m*p*ppp); |
---|
331 | if(denom<0) |
---|
332 | return(-1); /* complex root! The LPC generator handed us a bad filter */ |
---|
333 | |
---|
334 | if(pp>0){ |
---|
335 | denom = pp + sqrt(denom); |
---|
336 | if(denom<EPSILON)denom=EPSILON; |
---|
337 | }else{ |
---|
338 | denom = pp - sqrt(denom); |
---|
339 | if(denom>-(EPSILON))denom=-(EPSILON); |
---|
340 | } |
---|
341 | |
---|
342 | delta = m*p/denom; |
---|
343 | new -= delta; |
---|
344 | |
---|
345 | if(delta<0.f)delta*=-1; |
---|
346 | |
---|
347 | if(fabs(delta/new)<10e-12)break; |
---|
348 | lastdelta=delta; |
---|
349 | } |
---|
350 | |
---|
351 | r[m-1]=new; |
---|
352 | |
---|
353 | /* forward deflation */ |
---|
354 | |
---|
355 | for(i=m;i>0;i--) |
---|
356 | defl[i-1]+=new*defl[i]; |
---|
357 | defl++; |
---|
358 | |
---|
359 | } |
---|
360 | return(0); |
---|
361 | } |
---|
362 | |
---|
363 | |
---|
364 | /* for spit-and-polish only */ |
---|
365 | static int Newton_Raphson(float *a,int ord,float *r){ |
---|
366 | int i, k, count=0; |
---|
367 | double error=1.f; |
---|
368 | double *root=alloca(ord*sizeof(*root)); |
---|
369 | |
---|
370 | for(i=0; i<ord;i++) root[i] = r[i]; |
---|
371 | |
---|
372 | while(error>1e-20){ |
---|
373 | error=0; |
---|
374 | |
---|
375 | for(i=0; i<ord; i++) { /* Update each point. */ |
---|
376 | double pp=0.,delta; |
---|
377 | double rooti=root[i]; |
---|
378 | double p=a[ord]; |
---|
379 | for(k=ord-1; k>= 0; k--) { |
---|
380 | |
---|
381 | pp= pp* rooti + p; |
---|
382 | p = p * rooti + a[k]; |
---|
383 | } |
---|
384 | |
---|
385 | delta = p/pp; |
---|
386 | root[i] -= delta; |
---|
387 | error+= delta*delta; |
---|
388 | } |
---|
389 | |
---|
390 | if(count>40)return(-1); |
---|
391 | |
---|
392 | count++; |
---|
393 | } |
---|
394 | |
---|
395 | /* Replaced the original bubble sort with a real sort. With your |
---|
396 | help, we can eliminate the bubble sort in our lifetime. --Monty */ |
---|
397 | |
---|
398 | for(i=0; i<ord;i++) r[i] = root[i]; |
---|
399 | return(0); |
---|
400 | } |
---|
401 | |
---|
402 | |
---|
403 | /* Convert lpc coefficients to lsp coefficients */ |
---|
404 | int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){ |
---|
405 | int order2=(m+1)>>1; |
---|
406 | int g1_order,g2_order; |
---|
407 | float *g1=alloca(sizeof(*g1)*(order2+1)); |
---|
408 | float *g2=alloca(sizeof(*g2)*(order2+1)); |
---|
409 | float *g1r=alloca(sizeof(*g1r)*(order2+1)); |
---|
410 | float *g2r=alloca(sizeof(*g2r)*(order2+1)); |
---|
411 | int i; |
---|
412 | |
---|
413 | /* even and odd are slightly different base cases */ |
---|
414 | g1_order=(m+1)>>1; |
---|
415 | g2_order=(m) >>1; |
---|
416 | |
---|
417 | /* Compute the lengths of the x polynomials. */ |
---|
418 | /* Compute the first half of K & R F1 & F2 polynomials. */ |
---|
419 | /* Compute half of the symmetric and antisymmetric polynomials. */ |
---|
420 | /* Remove the roots at +1 and -1. */ |
---|
421 | |
---|
422 | g1[g1_order] = 1.f; |
---|
423 | for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i]; |
---|
424 | g2[g2_order] = 1.f; |
---|
425 | for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i]; |
---|
426 | |
---|
427 | if(g1_order>g2_order){ |
---|
428 | for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2]; |
---|
429 | }else{ |
---|
430 | for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1]; |
---|
431 | for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1]; |
---|
432 | } |
---|
433 | |
---|
434 | /* Convert into polynomials in cos(alpha) */ |
---|
435 | cheby(g1,g1_order); |
---|
436 | cheby(g2,g2_order); |
---|
437 | |
---|
438 | /* Find the roots of the 2 even polynomials.*/ |
---|
439 | if(Laguerre_With_Deflation(g1,g1_order,g1r) || |
---|
440 | Laguerre_With_Deflation(g2,g2_order,g2r)) |
---|
441 | return(-1); |
---|
442 | |
---|
443 | Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */ |
---|
444 | Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */ |
---|
445 | |
---|
446 | qsort(g1r,g1_order,sizeof(*g1r),comp); |
---|
447 | qsort(g2r,g2_order,sizeof(*g2r),comp); |
---|
448 | |
---|
449 | for(i=0;i<g1_order;i++) |
---|
450 | lsp[i*2] = acos(g1r[i]); |
---|
451 | |
---|
452 | for(i=0;i<g2_order;i++) |
---|
453 | lsp[i*2+1] = acos(g2r[i]); |
---|
454 | return(0); |
---|
455 | } |
---|