1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
8 | Also see acknowledgements in Readme.html |
---|
9 | |
---|
10 | This program is free software; you can redistribute it and/or modify it under |
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
13 | version. |
---|
14 | |
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
23 | |
---|
24 | You may alternatively use this source under the terms of a specific version of |
---|
25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
26 | Torus Knot Software Ltd. |
---|
27 | ----------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | #ifndef __Common_H__ |
---|
30 | #define __Common_H__ |
---|
31 | // Common stuff |
---|
32 | |
---|
33 | #include "OgreString.h" |
---|
34 | |
---|
35 | #if defined ( OGRE_GCC_VISIBILITY ) |
---|
36 | # pragma GCC visibility push(default) |
---|
37 | #endif |
---|
38 | |
---|
39 | #include <utility> |
---|
40 | #include <vector> |
---|
41 | #include <map> |
---|
42 | |
---|
43 | #if defined ( OGRE_GCC_VISIBILITY ) |
---|
44 | # pragma GCC visibility pop |
---|
45 | #endif |
---|
46 | |
---|
47 | namespace Ogre { |
---|
48 | |
---|
49 | |
---|
50 | /** Comparison functions used for the depth/stencil buffer operations and |
---|
51 | others. */ |
---|
52 | enum CompareFunction |
---|
53 | { |
---|
54 | CMPF_ALWAYS_FAIL, |
---|
55 | CMPF_ALWAYS_PASS, |
---|
56 | CMPF_LESS, |
---|
57 | CMPF_LESS_EQUAL, |
---|
58 | CMPF_EQUAL, |
---|
59 | CMPF_NOT_EQUAL, |
---|
60 | CMPF_GREATER_EQUAL, |
---|
61 | CMPF_GREATER |
---|
62 | }; |
---|
63 | |
---|
64 | /** High-level filtering options providing shortcuts to settings the |
---|
65 | minification, magnification and mip filters. */ |
---|
66 | enum TextureFilterOptions |
---|
67 | { |
---|
68 | /// Equal to: min=FO_POINT, mag=FO_POINT, mip=FO_NONE |
---|
69 | TFO_NONE, |
---|
70 | /// Equal to: min=FO_LINEAR, mag=FO_LINEAR, mip=FO_POINT |
---|
71 | TFO_BILINEAR, |
---|
72 | /// Equal to: min=FO_LINEAR, mag=FO_LINEAR, mip=FO_LINEAR |
---|
73 | TFO_TRILINEAR, |
---|
74 | /// Equal to: min=FO_ANISOTROPIC, max=FO_ANISOTROPIC, mip=FO_LINEAR |
---|
75 | TFO_ANISOTROPIC |
---|
76 | }; |
---|
77 | |
---|
78 | enum FilterType |
---|
79 | { |
---|
80 | /// The filter used when shrinking a texture |
---|
81 | FT_MIN, |
---|
82 | /// The filter used when magnifiying a texture |
---|
83 | FT_MAG, |
---|
84 | /// The filter used when determining the mipmap |
---|
85 | FT_MIP |
---|
86 | }; |
---|
87 | /** Filtering options for textures / mipmaps. */ |
---|
88 | enum FilterOptions |
---|
89 | { |
---|
90 | /// No filtering, used for FILT_MIP to turn off mipmapping |
---|
91 | FO_NONE, |
---|
92 | /// Use the closest pixel |
---|
93 | FO_POINT, |
---|
94 | /// Average of a 2x2 pixel area, denotes bilinear for MIN and MAG, trilinear for MIP |
---|
95 | FO_LINEAR, |
---|
96 | /// Similar to FO_LINEAR, but compensates for the angle of the texture plane |
---|
97 | FO_ANISOTROPIC |
---|
98 | }; |
---|
99 | |
---|
100 | /** Light shading modes. */ |
---|
101 | enum ShadeOptions |
---|
102 | { |
---|
103 | SO_FLAT, |
---|
104 | SO_GOURAUD, |
---|
105 | SO_PHONG |
---|
106 | }; |
---|
107 | |
---|
108 | /** Fog modes. */ |
---|
109 | enum FogMode |
---|
110 | { |
---|
111 | /// No fog. Duh. |
---|
112 | FOG_NONE, |
---|
113 | /// Fog density increases exponentially from the camera (fog = 1/e^(distance * density)) |
---|
114 | FOG_EXP, |
---|
115 | /// Fog density increases at the square of FOG_EXP, i.e. even quicker (fog = 1/e^(distance * density)^2) |
---|
116 | FOG_EXP2, |
---|
117 | /// Fog density increases linearly between the start and end distances |
---|
118 | FOG_LINEAR |
---|
119 | }; |
---|
120 | |
---|
121 | /** Hardware culling modes based on vertex winding. |
---|
122 | This setting applies to how the hardware API culls triangles it is sent. */ |
---|
123 | enum CullingMode |
---|
124 | { |
---|
125 | /// Hardware never culls triangles and renders everything it receives. |
---|
126 | CULL_NONE = 1, |
---|
127 | /// Hardware culls triangles whose vertices are listed clockwise in the view (default). |
---|
128 | CULL_CLOCKWISE = 2, |
---|
129 | /// Hardware culls triangles whose vertices are listed anticlockwise in the view. |
---|
130 | CULL_ANTICLOCKWISE = 3 |
---|
131 | }; |
---|
132 | |
---|
133 | /** Manual culling modes based on vertex normals. |
---|
134 | This setting applies to how the software culls triangles before sending them to the |
---|
135 | hardware API. This culling mode is used by scene managers which choose to implement it - |
---|
136 | normally those which deal with large amounts of fixed world geometry which is often |
---|
137 | planar (software culling movable variable geometry is expensive). */ |
---|
138 | enum ManualCullingMode |
---|
139 | { |
---|
140 | /// No culling so everything is sent to the hardware. |
---|
141 | MANUAL_CULL_NONE = 1, |
---|
142 | /// Cull triangles whose normal is pointing away from the camera (default). |
---|
143 | MANUAL_CULL_BACK = 2, |
---|
144 | /// Cull triangles whose normal is pointing towards the camera. |
---|
145 | MANUAL_CULL_FRONT = 3 |
---|
146 | }; |
---|
147 | |
---|
148 | /** Enumerates the wave types usable with the Ogre engine. */ |
---|
149 | enum WaveformType |
---|
150 | { |
---|
151 | /// Standard sine wave which smoothly changes from low to high and back again. |
---|
152 | WFT_SINE, |
---|
153 | /// An angular wave with a constant increase / decrease speed with pointed peaks. |
---|
154 | WFT_TRIANGLE, |
---|
155 | /// Half of the time is spent at the min, half at the max with instant transition between. |
---|
156 | WFT_SQUARE, |
---|
157 | /// Gradual steady increase from min to max over the period with an instant return to min at the end. |
---|
158 | WFT_SAWTOOTH, |
---|
159 | /// Gradual steady decrease from max to min over the period, with an instant return to max at the end. |
---|
160 | WFT_INVERSE_SAWTOOTH, |
---|
161 | /// Pulse Width Modulation. Works like WFT_SQUARE, except the high to low transition is controlled by duty cycle. |
---|
162 | /// With a duty cycle of 50% (0.5) will give the same output as WFT_SQUARE. |
---|
163 | WFT_PWM |
---|
164 | }; |
---|
165 | |
---|
166 | /** The polygon mode to use when rasterising. */ |
---|
167 | enum PolygonMode |
---|
168 | { |
---|
169 | /// Only points are rendered. |
---|
170 | PM_POINTS = 1, |
---|
171 | /// Wireframe models are rendered. |
---|
172 | PM_WIREFRAME = 2, |
---|
173 | /// Solid polygons are rendered. |
---|
174 | PM_SOLID = 3 |
---|
175 | }; |
---|
176 | |
---|
177 | /** An enumeration of broad shadow techniques */ |
---|
178 | enum ShadowTechnique |
---|
179 | { |
---|
180 | /** No shadows */ |
---|
181 | SHADOWTYPE_NONE = 0x00, |
---|
182 | /** Mask for additive shadows (not for direct use, use SHADOWTYPE_ enum instead) |
---|
183 | */ |
---|
184 | SHADOWDETAILTYPE_ADDITIVE = 0x01, |
---|
185 | /** Mask for modulative shadows (not for direct use, use SHADOWTYPE_ enum instead) |
---|
186 | */ |
---|
187 | SHADOWDETAILTYPE_MODULATIVE = 0x02, |
---|
188 | /** Mask for integrated shadows (not for direct use, use SHADOWTYPE_ enum instead) |
---|
189 | */ |
---|
190 | SHADOWDETAILTYPE_INTEGRATED = 0x04, |
---|
191 | /** Mask for stencil shadows (not for direct use, use SHADOWTYPE_ enum instead) |
---|
192 | */ |
---|
193 | SHADOWDETAILTYPE_STENCIL = 0x10, |
---|
194 | /** Mask for texture shadows (not for direct use, use SHADOWTYPE_ enum instead) |
---|
195 | */ |
---|
196 | SHADOWDETAILTYPE_TEXTURE = 0x20, |
---|
197 | |
---|
198 | /** Stencil shadow technique which renders all shadow volumes as |
---|
199 | a modulation after all the non-transparent areas have been |
---|
200 | rendered. This technique is considerably less fillrate intensive |
---|
201 | than the additive stencil shadow approach when there are multiple |
---|
202 | lights, but is not an accurate model. |
---|
203 | */ |
---|
204 | SHADOWTYPE_STENCIL_MODULATIVE = 0x12, |
---|
205 | /** Stencil shadow technique which renders each light as a separate |
---|
206 | additive pass to the scene. This technique can be very fillrate |
---|
207 | intensive because it requires at least 2 passes of the entire |
---|
208 | scene, more if there are multiple lights. However, it is a more |
---|
209 | accurate model than the modulative stencil approach and this is |
---|
210 | especially apparant when using coloured lights or bump mapping. |
---|
211 | */ |
---|
212 | SHADOWTYPE_STENCIL_ADDITIVE = 0x11, |
---|
213 | /** Texture-based shadow technique which involves a monochrome render-to-texture |
---|
214 | of the shadow caster and a projection of that texture onto the |
---|
215 | shadow receivers as a modulative pass. |
---|
216 | */ |
---|
217 | SHADOWTYPE_TEXTURE_MODULATIVE = 0x22, |
---|
218 | |
---|
219 | /** Texture-based shadow technique which involves a render-to-texture |
---|
220 | of the shadow caster and a projection of that texture onto the |
---|
221 | shadow receivers, built up per light as additive passes. |
---|
222 | This technique can be very fillrate intensive because it requires numLights + 2 |
---|
223 | passes of the entire scene. However, it is a more accurate model than the |
---|
224 | modulative approach and this is especially apparant when using coloured lights |
---|
225 | or bump mapping. |
---|
226 | */ |
---|
227 | SHADOWTYPE_TEXTURE_ADDITIVE = 0x21, |
---|
228 | |
---|
229 | /** Texture-based shadow technique which involves a render-to-texture |
---|
230 | of the shadow caster and a projection of that texture on to the shadow |
---|
231 | receivers, with the usage of those shadow textures completely controlled |
---|
232 | by the materials of the receivers. |
---|
233 | This technique is easily the most flexible of all techniques because |
---|
234 | the material author is in complete control over how the shadows are |
---|
235 | combined with regular rendering. It can perform shadows as accurately |
---|
236 | as SHADOWTYPE_TEXTURE_ADDITIVE but more efficiently because it requires |
---|
237 | less passes. However it also requires more expertise to use, and |
---|
238 | in almost all cases, shader capable hardware to really use to the full. |
---|
239 | @note The 'additive' part of this mode means that the colour of |
---|
240 | the rendered shadow texture is by default plain black. It does |
---|
241 | not mean it does the adding on your receivers automatically though, how you |
---|
242 | use that result is up to you. |
---|
243 | */ |
---|
244 | SHADOWTYPE_TEXTURE_ADDITIVE_INTEGRATED = 0x25, |
---|
245 | /** Texture-based shadow technique which involves a render-to-texture |
---|
246 | of the shadow caster and a projection of that texture on to the shadow |
---|
247 | receivers, with the usage of those shadow textures completely controlled |
---|
248 | by the materials of the receivers. |
---|
249 | This technique is easily the most flexible of all techniques because |
---|
250 | the material author is in complete control over how the shadows are |
---|
251 | combined with regular rendering. It can perform shadows as accurately |
---|
252 | as SHADOWTYPE_TEXTURE_ADDITIVE but more efficiently because it requires |
---|
253 | less passes. However it also requires more expertise to use, and |
---|
254 | in almost all cases, shader capable hardware to really use to the full. |
---|
255 | @note The 'modulative' part of this mode means that the colour of |
---|
256 | the rendered shadow texture is by default the 'shadow colour'. It does |
---|
257 | not mean it modulates on your receivers automatically though, how you |
---|
258 | use that result is up to you. |
---|
259 | */ |
---|
260 | SHADOWTYPE_TEXTURE_MODULATIVE_INTEGRATED = 0x26 |
---|
261 | }; |
---|
262 | |
---|
263 | /** An enumeration describing which material properties should track the vertex colours */ |
---|
264 | typedef int TrackVertexColourType; |
---|
265 | enum TrackVertexColourEnum { |
---|
266 | TVC_NONE = 0x0, |
---|
267 | TVC_AMBIENT = 0x1, |
---|
268 | TVC_DIFFUSE = 0x2, |
---|
269 | TVC_SPECULAR = 0x4, |
---|
270 | TVC_EMISSIVE = 0x8 |
---|
271 | }; |
---|
272 | |
---|
273 | /** Sort mode for billboard-set and particle-system */ |
---|
274 | enum SortMode |
---|
275 | { |
---|
276 | /** Sort by direction of the camera */ |
---|
277 | SM_DIRECTION, |
---|
278 | /** Sort by distance from the camera */ |
---|
279 | SM_DISTANCE |
---|
280 | }; |
---|
281 | |
---|
282 | /** Defines the frame buffer types. */ |
---|
283 | enum FrameBufferType { |
---|
284 | FBT_COLOUR = 0x1, |
---|
285 | FBT_DEPTH = 0x2, |
---|
286 | FBT_STENCIL = 0x4 |
---|
287 | }; |
---|
288 | |
---|
289 | |
---|
290 | class Light; |
---|
291 | typedef std::vector<Light*> LightList; |
---|
292 | |
---|
293 | typedef std::map<String, bool> UnaryOptionList; |
---|
294 | typedef std::map<String, String> BinaryOptionList; |
---|
295 | |
---|
296 | /// Name / value parameter pair (first = name, second = value) |
---|
297 | typedef std::map<String, String> NameValuePairList; |
---|
298 | |
---|
299 | /// Alias / Texture name pair (first = alias, second = texture name) |
---|
300 | typedef std::map<String, String> AliasTextureNamePairList; |
---|
301 | |
---|
302 | template< typename T > struct TRect |
---|
303 | { |
---|
304 | T left, top, right, bottom; |
---|
305 | TRect() {} |
---|
306 | TRect( T const & l, T const & t, T const & r, T const & b ) |
---|
307 | : left( l ), top( t ), right( r ), bottom( b ) |
---|
308 | { |
---|
309 | } |
---|
310 | TRect( TRect const & o ) |
---|
311 | : left( o.left ), top( o.top ), right( o.right ), bottom( o.bottom ) |
---|
312 | { |
---|
313 | } |
---|
314 | TRect & operator=( TRect const & o ) |
---|
315 | { |
---|
316 | left = o.left; |
---|
317 | top = o.top; |
---|
318 | right = o.right; |
---|
319 | bottom = o.bottom; |
---|
320 | return *this; |
---|
321 | } |
---|
322 | T width() const |
---|
323 | { |
---|
324 | return right - left; |
---|
325 | } |
---|
326 | T height() const |
---|
327 | { |
---|
328 | return bottom - top; |
---|
329 | } |
---|
330 | }; |
---|
331 | |
---|
332 | /** Structure used to define a rectangle in a 2-D floating point space. |
---|
333 | */ |
---|
334 | typedef TRect<float> FloatRect; |
---|
335 | |
---|
336 | /** Structure used to define a rectangle in a 2-D integer space. |
---|
337 | */ |
---|
338 | typedef TRect< long > Rect; |
---|
339 | |
---|
340 | /** Structure used to define a box in a 3-D integer space. |
---|
341 | Note that the left, top, and front edges are included but the right, |
---|
342 | bottom and back ones are not. |
---|
343 | */ |
---|
344 | struct Box |
---|
345 | { |
---|
346 | size_t left, top, right, bottom, front, back; |
---|
347 | /// Parameterless constructor for setting the members manually |
---|
348 | Box() |
---|
349 | { |
---|
350 | } |
---|
351 | /** Define a box from left, top, right and bottom coordinates |
---|
352 | This box will have depth one (front=0 and back=1). |
---|
353 | @param l x value of left edge |
---|
354 | @param t y value of top edge |
---|
355 | @param r x value of right edge |
---|
356 | @param b y value of bottom edge |
---|
357 | @note Note that the left, top, and front edges are included |
---|
358 | but the right, bottom and back ones are not. |
---|
359 | */ |
---|
360 | Box( size_t l, size_t t, size_t r, size_t b ): |
---|
361 | left(l), |
---|
362 | top(t), |
---|
363 | right(r), |
---|
364 | bottom(b), |
---|
365 | front(0), |
---|
366 | back(1) |
---|
367 | { |
---|
368 | assert(right >= left && bottom >= top && back >= front); |
---|
369 | } |
---|
370 | /** Define a box from left, top, front, right, bottom and back |
---|
371 | coordinates. |
---|
372 | @param l x value of left edge |
---|
373 | @param t y value of top edge |
---|
374 | @param ff z value of front edge |
---|
375 | @param r x value of right edge |
---|
376 | @param b y value of bottom edge |
---|
377 | @param bb z value of back edge |
---|
378 | @note Note that the left, top, and front edges are included |
---|
379 | but the right, bottom and back ones are not. |
---|
380 | */ |
---|
381 | Box( size_t l, size_t t, size_t ff, size_t r, size_t b, size_t bb ): |
---|
382 | left(l), |
---|
383 | top(t), |
---|
384 | right(r), |
---|
385 | bottom(b), |
---|
386 | front(ff), |
---|
387 | back(bb) |
---|
388 | { |
---|
389 | assert(right >= left && bottom >= top && back >= front); |
---|
390 | } |
---|
391 | |
---|
392 | /// Return true if the other box is a part of this one |
---|
393 | bool contains(const Box &def) const |
---|
394 | { |
---|
395 | return (def.left >= left && def.top >= top && def.front >= front && |
---|
396 | def.right <= right && def.bottom <= bottom && def.back <= back); |
---|
397 | } |
---|
398 | |
---|
399 | /// Get the width of this box |
---|
400 | size_t getWidth() const { return right-left; } |
---|
401 | /// Get the height of this box |
---|
402 | size_t getHeight() const { return bottom-top; } |
---|
403 | /// Get the depth of this box |
---|
404 | size_t getDepth() const { return back-front; } |
---|
405 | }; |
---|
406 | |
---|
407 | |
---|
408 | |
---|
409 | /** Locate command-line options of the unary form '-blah' and of the |
---|
410 | binary form '-blah foo', passing back the index of the next non-option. |
---|
411 | @param numargs, argv The standard parameters passed to the main method |
---|
412 | @param unaryOptList Map of unary options (ie those that do not require a parameter). |
---|
413 | Should be pre-populated with, for example '-e' in the key and false in the |
---|
414 | value. Options which are found will be set to true on return. |
---|
415 | @param binOptList Map of binnary options (ie those that require a parameter |
---|
416 | e.g. '-e afile.txt'). |
---|
417 | Should be pre-populated with, for example '-e' and the default setting. |
---|
418 | Options which are found will have the value updated. |
---|
419 | */ |
---|
420 | int _OgreExport findCommandLineOpts(int numargs, char** argv, UnaryOptionList& unaryOptList, |
---|
421 | BinaryOptionList& binOptList); |
---|
422 | |
---|
423 | } |
---|
424 | |
---|
425 | #endif |
---|