1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
8 | Also see acknowledgements in Readme.html |
---|
9 | |
---|
10 | This program is free software; you can redistribute it and/or modify it under |
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
13 | version. |
---|
14 | |
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
23 | |
---|
24 | You may alternatively use this source under the terms of a specific version of |
---|
25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
26 | Torus Knot Software Ltd. |
---|
27 | ----------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | #ifndef __RadixSort_H__ |
---|
30 | #define __RadixSort_H__ |
---|
31 | |
---|
32 | #include "OgrePrerequisites.h" |
---|
33 | |
---|
34 | namespace Ogre { |
---|
35 | |
---|
36 | /** Class for performing a radix sort (fast comparison-less sort based on |
---|
37 | byte value) on various standard STL containers. |
---|
38 | @remarks |
---|
39 | A radix sort is a very fast sort algorithm. It doesn't use comparisons |
---|
40 | and thus is able to break the theoretical minimum O(N*logN) complexity. |
---|
41 | Radix sort is complexity O(k*N), where k is a constant. Note that radix |
---|
42 | sorting is not in-place, it requires additional storage, so it trades |
---|
43 | memory for speed. The overhead of copying means that it is only faster |
---|
44 | for fairly large datasets, so you are advised to only use it for collections |
---|
45 | of at least a few hundred items. |
---|
46 | @par |
---|
47 | This is a template class to allow it to deal with a variety of containers, |
---|
48 | and a variety of value types to sort on. In addition to providing the |
---|
49 | container and value type on construction, you also need to supply a |
---|
50 | functor object which will retrieve the value to compare on for each item |
---|
51 | in the list. For example, if you had an std::vector of by-value instances |
---|
52 | of an object of class 'Bibble', and you wanted to sort on |
---|
53 | Bibble::getDoobrie(), you'd have to firstly create a functor |
---|
54 | like this: |
---|
55 | @code |
---|
56 | struct BibbleSortFunctor |
---|
57 | { |
---|
58 | float operator()(const Bibble& val) const |
---|
59 | { |
---|
60 | return val.getDoobrie(); |
---|
61 | } |
---|
62 | } |
---|
63 | @endcode |
---|
64 | Then, you need to declare a RadixSort class which names the container type, |
---|
65 | the value type in the container, and the type of the value you want to |
---|
66 | sort by. You can then call the sort function. E.g. |
---|
67 | @code |
---|
68 | RadixSort<BibbleList, Bibble, float> radixSorter; |
---|
69 | BibbleSortFunctor functor; |
---|
70 | |
---|
71 | radixSorter.sort(myBibbleList, functor); |
---|
72 | @endcode |
---|
73 | You should try to reuse RadixSort instances, since repeated allocation of the |
---|
74 | internal storage is then avoided. |
---|
75 | @note |
---|
76 | Radix sorting is often associated with just unsigned integer values. Our |
---|
77 | implementation can handle both unsigned and signed integers, as well as |
---|
78 | floats (which are often not supported by other radix sorters). doubles |
---|
79 | are not supported; you will need to implement your functor object to convert |
---|
80 | to float if you wish to use this sort routine. |
---|
81 | */ |
---|
82 | template <class TContainer, class TContainerValueType, typename TCompValueType> |
---|
83 | class RadixSort |
---|
84 | { |
---|
85 | public: |
---|
86 | typedef typename TContainer::iterator ContainerIter; |
---|
87 | protected: |
---|
88 | /// Alpha-pass counters of values (histogram) |
---|
89 | /// 4 of them so we can radix sort a maximum of a 32bit value |
---|
90 | int mCounters[4][256]; |
---|
91 | /// Beta-pass offsets |
---|
92 | int mOffsets[256]; |
---|
93 | /// Sort area size |
---|
94 | int mSortSize; |
---|
95 | /// Number of passes for this type |
---|
96 | int mNumPasses; |
---|
97 | |
---|
98 | struct SortEntry |
---|
99 | { |
---|
100 | TCompValueType key; |
---|
101 | ContainerIter iter; |
---|
102 | SortEntry() {} |
---|
103 | SortEntry(TCompValueType k, ContainerIter it) |
---|
104 | : key(k), iter(it) {} |
---|
105 | |
---|
106 | }; |
---|
107 | /// Temp sort storage |
---|
108 | std::vector<SortEntry> mSortArea1; |
---|
109 | std::vector<SortEntry> mSortArea2; |
---|
110 | std::vector<SortEntry>* mSrc; |
---|
111 | std::vector<SortEntry>* mDest; |
---|
112 | TContainer mTmpContainer; // initial copy |
---|
113 | |
---|
114 | |
---|
115 | void sortPass(int byteIndex) |
---|
116 | { |
---|
117 | // Calculate offsets |
---|
118 | // Basically this just leaves gaps for duplicate entries to fill |
---|
119 | mOffsets[0] = 0; |
---|
120 | for (int i = 1; i < 256; ++i) |
---|
121 | { |
---|
122 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; |
---|
123 | } |
---|
124 | |
---|
125 | // Sort pass |
---|
126 | for (int i = 0; i < mSortSize; ++i) |
---|
127 | { |
---|
128 | unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key); |
---|
129 | (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i]; |
---|
130 | } |
---|
131 | |
---|
132 | } |
---|
133 | template <typename T> |
---|
134 | void finalPass(int byteIndex, T val) |
---|
135 | { |
---|
136 | // default is to do normal pass |
---|
137 | sortPass(byteIndex); |
---|
138 | } |
---|
139 | |
---|
140 | // special case signed int |
---|
141 | void finalPass(int byteIndex, int val) |
---|
142 | { |
---|
143 | int numNeg = 0; |
---|
144 | // all negative values are in entries 128+ in most significant byte |
---|
145 | for (int i = 128; i < 256; ++i) |
---|
146 | { |
---|
147 | numNeg += mCounters[byteIndex][i]; |
---|
148 | } |
---|
149 | // Calculate offsets - positive ones start at the number of negatives |
---|
150 | // do positive numbers |
---|
151 | mOffsets[0] = numNeg; |
---|
152 | for (int i = 1; i < 128; ++i) |
---|
153 | { |
---|
154 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; |
---|
155 | } |
---|
156 | // Do negative numbers (must start at zero) |
---|
157 | // No need to invert ordering, already correct (-1 is highest number) |
---|
158 | mOffsets[128] = 0; |
---|
159 | for (int i = 129; i < 256; ++i) |
---|
160 | { |
---|
161 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; |
---|
162 | } |
---|
163 | |
---|
164 | // Sort pass |
---|
165 | for (int i = 0; i < mSortSize; ++i) |
---|
166 | { |
---|
167 | unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key); |
---|
168 | (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i]; |
---|
169 | } |
---|
170 | } |
---|
171 | |
---|
172 | |
---|
173 | // special case float |
---|
174 | void finalPass(int byteIndex, float val) |
---|
175 | { |
---|
176 | // floats need to be special cased since negative numbers will come |
---|
177 | // after positives (high bit = sign) and will be in reverse order |
---|
178 | // (no ones-complement of the +ve value) |
---|
179 | int numNeg = 0; |
---|
180 | // all negative values are in entries 128+ in most significant byte |
---|
181 | for (int i = 128; i < 256; ++i) |
---|
182 | { |
---|
183 | numNeg += mCounters[byteIndex][i]; |
---|
184 | } |
---|
185 | // Calculate offsets - positive ones start at the number of negatives |
---|
186 | // do positive numbers normally |
---|
187 | mOffsets[0] = numNeg; |
---|
188 | for (int i = 1; i < 128; ++i) |
---|
189 | { |
---|
190 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; |
---|
191 | } |
---|
192 | // Do negative numbers (must start at zero) |
---|
193 | // Also need to invert ordering |
---|
194 | // In order to preserve the stability of the sort (essential since |
---|
195 | // we rely on previous bytes already being sorted) we have to count |
---|
196 | // backwards in our offsets from |
---|
197 | mOffsets[255] = mCounters[byteIndex][255]; |
---|
198 | for (int i = 254; i > 127; --i) |
---|
199 | { |
---|
200 | mOffsets[i] = mOffsets[i+1] + mCounters[byteIndex][i]; |
---|
201 | } |
---|
202 | |
---|
203 | // Sort pass |
---|
204 | for (int i = 0; i < mSortSize; ++i) |
---|
205 | { |
---|
206 | unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key); |
---|
207 | if (byteVal > 127) |
---|
208 | { |
---|
209 | // -ve; pre-decrement since offsets set to count |
---|
210 | (*mDest)[--mOffsets[byteVal]] = (*mSrc)[i]; |
---|
211 | } |
---|
212 | else |
---|
213 | { |
---|
214 | // +ve |
---|
215 | (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i]; |
---|
216 | } |
---|
217 | } |
---|
218 | } |
---|
219 | |
---|
220 | inline unsigned char getByte(int byteIndex, TCompValueType val) |
---|
221 | { |
---|
222 | #if OGRE_ENDIAN == OGRE_ENDIAN_LITTLE |
---|
223 | return ((unsigned char*)(&val))[byteIndex]; |
---|
224 | #else |
---|
225 | return ((unsigned char*)(&val))[mNumPasses - byteIndex - 1]; |
---|
226 | #endif |
---|
227 | } |
---|
228 | |
---|
229 | public: |
---|
230 | |
---|
231 | RadixSort() {} |
---|
232 | ~RadixSort() {} |
---|
233 | |
---|
234 | /** Main sort function |
---|
235 | @param container A container of the type you declared when declaring |
---|
236 | @param func A functor which returns the value for comparison when given |
---|
237 | a container value |
---|
238 | */ |
---|
239 | template <class TFunction> |
---|
240 | void sort(TContainer& container, TFunction func) |
---|
241 | { |
---|
242 | if (container.empty()) |
---|
243 | return; |
---|
244 | |
---|
245 | // Set up the sort areas |
---|
246 | mSortSize = static_cast<int>(container.size()); |
---|
247 | mSortArea1.resize(container.size()); |
---|
248 | mSortArea2.resize(container.size()); |
---|
249 | |
---|
250 | // Copy data now (we need constant iterators for sorting) |
---|
251 | mTmpContainer = container; |
---|
252 | |
---|
253 | mNumPasses = sizeof(TCompValueType); |
---|
254 | |
---|
255 | // Counter pass |
---|
256 | // Initialise the counts |
---|
257 | int p; |
---|
258 | for (p = 0; p < mNumPasses; ++p) |
---|
259 | memset(mCounters[p], 0, sizeof(int) * 256); |
---|
260 | |
---|
261 | // Perform alpha pass to count |
---|
262 | ContainerIter i = mTmpContainer.begin(); |
---|
263 | TCompValueType prevValue = func.operator()(*i); |
---|
264 | bool needsSorting = false; |
---|
265 | for (int u = 0; i != mTmpContainer.end(); ++i, ++u) |
---|
266 | { |
---|
267 | // get sort value |
---|
268 | TCompValueType val = func.operator()(*i); |
---|
269 | // cheap check to see if needs sorting (temporal coherence) |
---|
270 | if (!needsSorting && val < prevValue) |
---|
271 | needsSorting = true; |
---|
272 | |
---|
273 | // Create a sort entry |
---|
274 | mSortArea1[u].key = val; |
---|
275 | mSortArea1[u].iter = i; |
---|
276 | |
---|
277 | // increase counters |
---|
278 | for (p = 0; p < mNumPasses; ++p) |
---|
279 | { |
---|
280 | unsigned char byteVal = getByte(p, val); |
---|
281 | mCounters[p][byteVal]++; |
---|
282 | } |
---|
283 | |
---|
284 | prevValue = val; |
---|
285 | |
---|
286 | } |
---|
287 | |
---|
288 | // early exit if already sorted |
---|
289 | if (!needsSorting) |
---|
290 | return; |
---|
291 | |
---|
292 | |
---|
293 | // Sort passes |
---|
294 | mSrc = &mSortArea1; |
---|
295 | mDest = &mSortArea2; |
---|
296 | |
---|
297 | for (p = 0; p < mNumPasses - 1; ++p) |
---|
298 | { |
---|
299 | sortPass(p); |
---|
300 | // flip src/dst |
---|
301 | std::vector<SortEntry>* tmp = mSrc; |
---|
302 | mSrc = mDest; |
---|
303 | mDest = tmp; |
---|
304 | } |
---|
305 | // Final pass may differ, make polymorphic |
---|
306 | finalPass(p, prevValue); |
---|
307 | |
---|
308 | // Copy everything back |
---|
309 | int c = 0; |
---|
310 | for (i = container.begin(); |
---|
311 | i != container.end(); ++i, ++c) |
---|
312 | { |
---|
313 | *i = *((*mDest)[c].iter); |
---|
314 | } |
---|
315 | } |
---|
316 | |
---|
317 | }; |
---|
318 | |
---|
319 | |
---|
320 | } |
---|
321 | #endif |
---|
322 | |
---|