1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2006 Torus Knot Software Ltd |
---|
8 | Copyright (c) 2006 Matthias Fink, netAllied GmbH <matthias.fink@web.de> |
---|
9 | Also see acknowledgements in Readme.html |
---|
10 | |
---|
11 | This program is free software; you can redistribute it and/or modify it under |
---|
12 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
13 | Foundation; either version 2 of the License, or (at your option) any later |
---|
14 | version. |
---|
15 | |
---|
16 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
18 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
19 | |
---|
20 | You should have received a copy of the GNU Lesser General Public License along with |
---|
21 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
22 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
23 | http://www.gnu.org/copyleft/lesser.txt. |
---|
24 | |
---|
25 | You may alternatively use this source under the terms of a specific version of |
---|
26 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
27 | Torus Knot Software Ltd. |
---|
28 | ----------------------------------------------------------------------------- |
---|
29 | */ |
---|
30 | #ifndef __ShadowCameraSetupFocused_H__ |
---|
31 | #define __ShadowCameraSetupFocused_H__ |
---|
32 | |
---|
33 | #include "OgrePrerequisites.h" |
---|
34 | #include "OgreShadowCameraSetup.h" |
---|
35 | #include "OgrePolygon.h" |
---|
36 | #include "OgreConvexBody.h" |
---|
37 | |
---|
38 | |
---|
39 | namespace Ogre { |
---|
40 | |
---|
41 | class ConvexBody; |
---|
42 | |
---|
43 | /** Implements the uniform shadow mapping algorithm in focused mode. |
---|
44 | @remarks |
---|
45 | Differs from the default shadow mapping projection in that it focuses the |
---|
46 | shadow map on the visible areas of the scene. This results in better |
---|
47 | shadow map texel usage, at the expense of some 'swimming' of the shadow |
---|
48 | texture on receivers as the basis is constantly being reevaluated. |
---|
49 | @note |
---|
50 | Original implementation by Matthias Fink <matthias.fink@web.de>, 2006. |
---|
51 | */ |
---|
52 | class _OgreExport FocusedShadowCameraSetup : public ShadowCameraSetup |
---|
53 | { |
---|
54 | protected: |
---|
55 | /** Transform to or from light space as defined by Wimmer et al. |
---|
56 | @remarks |
---|
57 | Point and spot lights need to be converted to directional lights to enable a 1:1 |
---|
58 | light mapping. Otherwise a directional light may become a point light or a point |
---|
59 | sink (opposite of a light source) or point/spot lights may become directional lights |
---|
60 | or light sinks. The light direction is always -y. |
---|
61 | */ |
---|
62 | static const Matrix4 msNormalToLightSpace; |
---|
63 | static const Matrix4 msLightSpaceToNormal; |
---|
64 | |
---|
65 | /** Temporary preallocated frustum to set up a projection matrix in |
---|
66 | ::calculateShadowMappingMatrix() |
---|
67 | */ |
---|
68 | Frustum* mTempFrustum; |
---|
69 | |
---|
70 | /** Temporary preallocated camera to set up a light frustum for clipping in ::calculateB. |
---|
71 | */ |
---|
72 | Camera* mLightFrustumCamera; |
---|
73 | mutable bool mLightFrustumCameraCalculated; |
---|
74 | |
---|
75 | /// Use tighter focus region? |
---|
76 | bool mUseAggressiveRegion; |
---|
77 | |
---|
78 | /** Internal class holding a point list representation of a convex body. |
---|
79 | */ |
---|
80 | class _OgreExport PointListBody |
---|
81 | { |
---|
82 | Polygon::VertexList mBodyPoints; |
---|
83 | AxisAlignedBox mAAB; |
---|
84 | |
---|
85 | public: |
---|
86 | PointListBody(); |
---|
87 | PointListBody(const ConvexBody& body); |
---|
88 | ~PointListBody(); |
---|
89 | |
---|
90 | /** Merges a second PointListBody into this one. |
---|
91 | */ |
---|
92 | void merge(const PointListBody& plb); |
---|
93 | |
---|
94 | /** Builds a point list body from a 'real' body. |
---|
95 | @remarks |
---|
96 | Inserts all vertices from a body into the point list with or without adding duplicate vertices. |
---|
97 | */ |
---|
98 | void build(const ConvexBody& body, bool filterDuplicates = true); |
---|
99 | |
---|
100 | /** Builds a PointListBody from a Body and includes all the space in a given direction. |
---|
101 | @remarks |
---|
102 | Intersects the bounding box with a ray from each available point of the body with the given |
---|
103 | direction. Base and intersection points are stored in a PointListBody structure. |
---|
104 | @note |
---|
105 | Duplicate vertices are not filtered. |
---|
106 | @note |
---|
107 | Body is not checked for correctness. |
---|
108 | */ |
---|
109 | void buildAndIncludeDirection(const ConvexBody& body, |
---|
110 | const AxisAlignedBox& aabMax, const Vector3& dir); |
---|
111 | |
---|
112 | /** Returns the bounding box representation. |
---|
113 | */ |
---|
114 | const AxisAlignedBox& getAAB(void) const; |
---|
115 | |
---|
116 | /** Adds a specific point to the body list. |
---|
117 | */ |
---|
118 | void addPoint(const Vector3& point); |
---|
119 | |
---|
120 | /** Adds all points of an AAB. |
---|
121 | */ |
---|
122 | void addAAB(const AxisAlignedBox& aab); |
---|
123 | |
---|
124 | /** Returns a point. |
---|
125 | */ |
---|
126 | const Vector3& getPoint(size_t cnt) const; |
---|
127 | |
---|
128 | /** Returns the point count. |
---|
129 | */ |
---|
130 | size_t getPointCount(void) const; |
---|
131 | |
---|
132 | /** Resets the body. |
---|
133 | */ |
---|
134 | void reset(void); |
---|
135 | |
---|
136 | }; |
---|
137 | |
---|
138 | // Persistent calculations to prevent reallocation |
---|
139 | mutable ConvexBody mBodyB; |
---|
140 | mutable PointListBody mPointListBodyB; |
---|
141 | mutable PointListBody mPointListBodyLVS; |
---|
142 | |
---|
143 | protected: |
---|
144 | /** Calculates the standard shadow mapping matrix. |
---|
145 | @remarks |
---|
146 | Provides the view and projection matrix for standard shadow mapping. |
---|
147 | @note |
---|
148 | You can choose which things you want to have: view matrix and/or projection |
---|
149 | matrix and/or shadow camera. Passing a NULL value as parameter ignores the |
---|
150 | generation of this specific value. |
---|
151 | @param sm: scene manager |
---|
152 | @param cam: currently active camera |
---|
153 | @param light: currently active light |
---|
154 | @param out_view: calculated uniform view shadow mapping matrix (may be NULL) |
---|
155 | @param out_proj: calculated uniform projection shadow mapping matrix (may be NULL) |
---|
156 | @param out_cam: calculated uniform shadow camera (may be NULL) |
---|
157 | */ |
---|
158 | void calculateShadowMappingMatrix(const SceneManager& sm, const Camera& cam, |
---|
159 | const Light& light, Matrix4 *out_view, |
---|
160 | Matrix4 *out_proj, Camera *out_cam) const; |
---|
161 | |
---|
162 | /** Calculates the intersection bodyB. |
---|
163 | @remarks |
---|
164 | The intersection bodyB consists of the concatenation the cam frustum clipped |
---|
165 | by the scene bounding box followed by a convex hullification with the light's |
---|
166 | position and the clipping with the scene bounding box and the light frustum: |
---|
167 | ((V \cap S) + l) \cap S \cap L (\cap: convex intersection, +: convex hull |
---|
168 | operation). |
---|
169 | For directional lights the bodyB is assembled out of the camera frustum |
---|
170 | clipped by the scene bounding box followed by the extrusion of all available |
---|
171 | bodyB points towards the negative light direction. The rays are intersected |
---|
172 | by a maximum bounding box and added to the bodyB points to form the final |
---|
173 | intersection bodyB point list. |
---|
174 | @param sm: scene manager |
---|
175 | @param cam: currently active camera |
---|
176 | @param light: currently active light |
---|
177 | @param sceneBB: scene bounding box for clipping operations |
---|
178 | @param out_bodyB: final intersection bodyB point list |
---|
179 | */ |
---|
180 | void calculateB(const SceneManager& sm, const Camera& cam, const Light& light, |
---|
181 | const AxisAlignedBox& sceneBB, PointListBody *out_bodyB) const; |
---|
182 | |
---|
183 | /** Calculates the bodyLVS. |
---|
184 | @remarks |
---|
185 | Calculates the bodyLVS which consists of the convex intersection operation |
---|
186 | affecting the light frustum, the view frustum, and the current scene bounding |
---|
187 | box is used to find suitable positions in the viewer's frustum to build the |
---|
188 | rotation matrix L_r. This matrix is applied after the projection matrix L_p to |
---|
189 | avoid an accidental flip of the frustum orientation for views tilted with |
---|
190 | respect to the shadow map. |
---|
191 | @param scene: holds all potential occluders / receivers as one single bounding box |
---|
192 | of the currently active scene node |
---|
193 | @param cam: current viewer camera |
---|
194 | @param light: current light |
---|
195 | @param out_LVS: intersection body LVS (world coordinates) |
---|
196 | */ |
---|
197 | void calculateLVS(const SceneManager& sm, const Camera& cam, const Light& light, |
---|
198 | const AxisAlignedBox& sceneBB, PointListBody *out_LVS) const; |
---|
199 | |
---|
200 | /** Returns the projection view direction. |
---|
201 | @remarks |
---|
202 | After the matrix L_p is applied the orientation of the light space may tilt for |
---|
203 | non-identity projections. To prevent a false shadow cast the real view direction |
---|
204 | is evaluated and applied to the light matrix L. |
---|
205 | @param lightSpace: matrix of the light space transformation |
---|
206 | @param cam: current viewer camera |
---|
207 | @param bodyLVS: intersection body LVS (relevant space in front of the camera) |
---|
208 | */ |
---|
209 | Vector3 getLSProjViewDir(const Matrix4& lightSpace, const Camera& cam, |
---|
210 | const PointListBody& bodyLVS) const; |
---|
211 | |
---|
212 | /** Returns a valid near-point seen by the camera. |
---|
213 | @remarks |
---|
214 | Returns a point that is situated near the camera by analyzing the bodyLVS that |
---|
215 | contains all the relevant scene space in front of the light and the camera in |
---|
216 | a point list array. The view matrix is relevant because the nearest point in |
---|
217 | front of the camera should be determined. |
---|
218 | @param viewMatrix: view matrix of the current camera |
---|
219 | @param bodyLVS: intersection body LVS (relevant space in front of the camera) |
---|
220 | */ |
---|
221 | Vector3 getNearCameraPoint_ws(const Matrix4& viewMatrix, |
---|
222 | const PointListBody& bodyLVS) const; |
---|
223 | |
---|
224 | /** Transforms a given body to the unit cube (-1,-1,-1) / (+1,+1,+1) with a specific |
---|
225 | shadow matrix enabled. |
---|
226 | @remarks |
---|
227 | Transforms a given point list body object with the matrix m and then maps its |
---|
228 | extends to a (-1,-1,-1) / (+1,+1,+1) unit cube |
---|
229 | @param m: transformation matrix applied on the point list body |
---|
230 | @param body: contains the points of the extends of all valid scene elements which |
---|
231 | are mapped to the unit cube |
---|
232 | */ |
---|
233 | Matrix4 transformToUnitCube(const Matrix4& m, const PointListBody& body) const; |
---|
234 | |
---|
235 | /** Builds a view matrix. |
---|
236 | @remarks |
---|
237 | Builds a standard view matrix out of a given position, direction and up vector. |
---|
238 | */ |
---|
239 | Matrix4 buildViewMatrix(const Vector3& pos, const Vector3& dir, const Vector3& up) const; |
---|
240 | |
---|
241 | public: |
---|
242 | /** Default constructor. |
---|
243 | @remarks |
---|
244 | Temporary frustum and camera set up here. |
---|
245 | */ |
---|
246 | FocusedShadowCameraSetup(void); |
---|
247 | |
---|
248 | /** Default destructor. |
---|
249 | @remarks |
---|
250 | Temporary frustum and camera destroyed here. |
---|
251 | */ |
---|
252 | virtual ~FocusedShadowCameraSetup(void); |
---|
253 | |
---|
254 | /** Returns a uniform shadow camera with a focused view. |
---|
255 | */ |
---|
256 | virtual void getShadowCamera(const SceneManager *sm, const Camera *cam, |
---|
257 | const Viewport *vp, const Light *light, Camera *texCam) const; |
---|
258 | |
---|
259 | /** Sets whether or not to use the more agressive approach to deciding on |
---|
260 | the focus region or not. |
---|
261 | @note |
---|
262 | There are 2 approaches that can be used to define the focus region, |
---|
263 | the more aggressive way introduced by Wimmer et al, or the original |
---|
264 | way as described in Stamminger et al. Wimmer et al's way tends to |
---|
265 | come up with a tighter focus region but in rare cases (mostly highly |
---|
266 | glancing angles) can cause some shadow casters to be clipped |
---|
267 | incorrectly. By default the more aggressive approach is used since it |
---|
268 | leads to significantly better results in most cases, but if you experience |
---|
269 | clipping issues, you can use the less agressive version. |
---|
270 | @param aggressive True to use the more agressive approach, false otherwise. |
---|
271 | */ |
---|
272 | void setUseAggressiveFocusRegion(bool aggressive) { mUseAggressiveRegion = aggressive; } |
---|
273 | |
---|
274 | bool getUseAggressiveFocusRegion() const { return mUseAggressiveRegion; } |
---|
275 | |
---|
276 | }; |
---|
277 | |
---|
278 | |
---|
279 | } |
---|
280 | |
---|
281 | #endif |
---|