1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
8 | Also see acknowledgements in Readme.html |
---|
9 | |
---|
10 | This program is free software; you can redistribute it and/or modify it under |
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
13 | version. |
---|
14 | |
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
23 | |
---|
24 | You may alternatively use this source under the terms of a specific version of |
---|
25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
26 | Torus Knot Software Ltd. |
---|
27 | ----------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | #include "OgreStableHeaders.h" |
---|
30 | #include "OgreRotationalSpline.h" |
---|
31 | |
---|
32 | |
---|
33 | |
---|
34 | namespace Ogre { |
---|
35 | |
---|
36 | //--------------------------------------------------------------------- |
---|
37 | RotationalSpline::RotationalSpline() |
---|
38 | : mAutoCalc(true) |
---|
39 | { |
---|
40 | } |
---|
41 | //--------------------------------------------------------------------- |
---|
42 | RotationalSpline::~RotationalSpline() |
---|
43 | { |
---|
44 | } |
---|
45 | //--------------------------------------------------------------------- |
---|
46 | void RotationalSpline::addPoint(const Quaternion& p) |
---|
47 | { |
---|
48 | mPoints.push_back(p); |
---|
49 | if (mAutoCalc) |
---|
50 | { |
---|
51 | recalcTangents(); |
---|
52 | } |
---|
53 | } |
---|
54 | //--------------------------------------------------------------------- |
---|
55 | Quaternion RotationalSpline::interpolate(Real t, bool useShortestPath) |
---|
56 | { |
---|
57 | // Work out which segment this is in |
---|
58 | Real fSeg = t * (mPoints.size() - 1); |
---|
59 | unsigned int segIdx = (unsigned int)fSeg; |
---|
60 | // Apportion t |
---|
61 | t = fSeg - segIdx; |
---|
62 | |
---|
63 | return interpolate(segIdx, t, useShortestPath); |
---|
64 | |
---|
65 | } |
---|
66 | //--------------------------------------------------------------------- |
---|
67 | Quaternion RotationalSpline::interpolate(unsigned int fromIndex, Real t, |
---|
68 | bool useShortestPath) |
---|
69 | { |
---|
70 | // Bounds check |
---|
71 | assert (fromIndex >= 0 && fromIndex < mPoints.size() && |
---|
72 | "fromIndex out of bounds"); |
---|
73 | |
---|
74 | if ((fromIndex + 1) == mPoints.size()) |
---|
75 | { |
---|
76 | // Duff request, cannot blend to nothing |
---|
77 | // Just return source |
---|
78 | return mPoints[fromIndex]; |
---|
79 | |
---|
80 | } |
---|
81 | // Fast special cases |
---|
82 | if (t == 0.0f) |
---|
83 | { |
---|
84 | return mPoints[fromIndex]; |
---|
85 | } |
---|
86 | else if(t == 1.0f) |
---|
87 | { |
---|
88 | return mPoints[fromIndex + 1]; |
---|
89 | } |
---|
90 | |
---|
91 | // Real interpolation |
---|
92 | // Use squad using tangents we've already set up |
---|
93 | Quaternion &p = mPoints[fromIndex]; |
---|
94 | Quaternion &q = mPoints[fromIndex+1]; |
---|
95 | Quaternion &a = mTangents[fromIndex]; |
---|
96 | Quaternion &b = mTangents[fromIndex+1]; |
---|
97 | |
---|
98 | // NB interpolate to nearest rotation |
---|
99 | return Quaternion::Squad(t, p, a, b, q, useShortestPath); |
---|
100 | |
---|
101 | } |
---|
102 | //--------------------------------------------------------------------- |
---|
103 | void RotationalSpline::recalcTangents(void) |
---|
104 | { |
---|
105 | // ShoeMake (1987) approach |
---|
106 | // Just like Catmull-Rom really, just more gnarly |
---|
107 | // And no, I don't understand how to derive this! |
---|
108 | // |
---|
109 | // let p = point[i], pInv = p.Inverse |
---|
110 | // tangent[i] = p * exp( -0.25 * ( log(pInv * point[i+1]) + log(pInv * point[i-1]) ) ) |
---|
111 | // |
---|
112 | // Assume endpoint tangents are parallel with line with neighbour |
---|
113 | |
---|
114 | unsigned int i, numPoints; |
---|
115 | bool isClosed; |
---|
116 | |
---|
117 | numPoints = (unsigned int)mPoints.size(); |
---|
118 | |
---|
119 | if (numPoints < 2) |
---|
120 | { |
---|
121 | // Can't do anything yet |
---|
122 | return; |
---|
123 | } |
---|
124 | |
---|
125 | mTangents.resize(numPoints); |
---|
126 | |
---|
127 | if (mPoints[0] == mPoints[numPoints-1]) |
---|
128 | { |
---|
129 | isClosed = true; |
---|
130 | } |
---|
131 | else |
---|
132 | { |
---|
133 | isClosed = false; |
---|
134 | } |
---|
135 | |
---|
136 | Quaternion invp, part1, part2, preExp; |
---|
137 | for(i = 0; i < numPoints; ++i) |
---|
138 | { |
---|
139 | Quaternion &p = mPoints[i]; |
---|
140 | invp = p.Inverse(); |
---|
141 | |
---|
142 | if (i ==0) |
---|
143 | { |
---|
144 | // special case start |
---|
145 | part1 = (invp * mPoints[i+1]).Log(); |
---|
146 | if (isClosed) |
---|
147 | { |
---|
148 | // Use numPoints-2 since numPoints-1 == end == start == this one |
---|
149 | part2 = (invp * mPoints[numPoints-2]).Log(); |
---|
150 | } |
---|
151 | else |
---|
152 | { |
---|
153 | part2 = (invp * p).Log(); |
---|
154 | } |
---|
155 | } |
---|
156 | else if (i == numPoints-1) |
---|
157 | { |
---|
158 | // special case end |
---|
159 | if (isClosed) |
---|
160 | { |
---|
161 | // Wrap to [1] (not [0], this is the same as end == this one) |
---|
162 | part1 = (invp * mPoints[1]).Log(); |
---|
163 | } |
---|
164 | else |
---|
165 | { |
---|
166 | part1 = (invp * p).Log(); |
---|
167 | } |
---|
168 | part2 = (invp * mPoints[i-1]).Log(); |
---|
169 | } |
---|
170 | else |
---|
171 | { |
---|
172 | part1 = (invp * mPoints[i+1]).Log(); |
---|
173 | part2 = (invp * mPoints[i-1]).Log(); |
---|
174 | } |
---|
175 | |
---|
176 | preExp = -0.25 * (part1 + part2); |
---|
177 | mTangents[i] = p * preExp.Exp(); |
---|
178 | |
---|
179 | } |
---|
180 | |
---|
181 | |
---|
182 | |
---|
183 | } |
---|
184 | //--------------------------------------------------------------------- |
---|
185 | const Quaternion& RotationalSpline::getPoint(unsigned short index) const |
---|
186 | { |
---|
187 | assert (index < mPoints.size() && "Point index is out of bounds!!"); |
---|
188 | |
---|
189 | return mPoints[index]; |
---|
190 | } |
---|
191 | //--------------------------------------------------------------------- |
---|
192 | unsigned short RotationalSpline::getNumPoints(void) const |
---|
193 | { |
---|
194 | return (unsigned short)mPoints.size(); |
---|
195 | } |
---|
196 | //--------------------------------------------------------------------- |
---|
197 | void RotationalSpline::clear(void) |
---|
198 | { |
---|
199 | mPoints.clear(); |
---|
200 | mTangents.clear(); |
---|
201 | } |
---|
202 | //--------------------------------------------------------------------- |
---|
203 | void RotationalSpline::updatePoint(unsigned short index, const Quaternion& value) |
---|
204 | { |
---|
205 | assert (index < mPoints.size() && "Point index is out of bounds!!"); |
---|
206 | |
---|
207 | mPoints[index] = value; |
---|
208 | if (mAutoCalc) |
---|
209 | { |
---|
210 | recalcTangents(); |
---|
211 | } |
---|
212 | } |
---|
213 | //--------------------------------------------------------------------- |
---|
214 | void RotationalSpline::setAutoCalculate(bool autoCalc) |
---|
215 | { |
---|
216 | mAutoCalc = autoCalc; |
---|
217 | } |
---|
218 | //--------------------------------------------------------------------- |
---|
219 | |
---|
220 | |
---|
221 | |
---|
222 | } |
---|
223 | |
---|
224 | |
---|
225 | |
---|
226 | |
---|